Wissenswertes

9.0	Wissenswertes	
9.1	Technische Grundlagen	3
9.1.1 9.1.2 9.1.3	Allgemeine Verarbeitungsrichtlinien Adressen Normen	
9.2	Statische Vorbemessung	1
9.2.1 9.2.2 9.2.3	Aluminiumprofile - 50 mm Riegelverbinder Glasauflager	1: 14 1:
9.3	Prüfungen / Zulassungen / CE-Zeichen	29
9.3.1 9.3.2 9.3.3 9.3.4 9.3.5	Forderung nach geprüften und zugelassenen Produkten Übersicht über Prüfungen und Zulassungen BauPV / DOP / ITT / FPC / CE DIN EN 13830 / Erläuterungen Oberflächenbeschichtung	29 30 32 32 42
9.4	Wärmeschutz	43
9.4.1 9.4.2 9.4.3 9.4.4	Einführung Normen Berechnungsgrundlagen Uf-Werte	43 44 45 63
9.5	Feuchteschutz	6
9.5.1	Feuchteschutz in der Glasfassade	6
9.6	Potentialausgleich/Blitzschutz	7
9.6.1	Potentialausgleich und Blitzschutz von Vorhangfassaden	7
9.7	Einbruchhemmende Fassaden	7
9.7.1 9.7 <i>2</i>	Einbruchhemmende Fassade Finbruchhemmende Fassade - RC 2	7! 78

Allgemeine Verarbeitungsrichtlinien

<u>9.1</u>

Allgemein

Neben den Verarbeitungshinweisen der jeweiligen Stabalux Systeme, sei auch noch auf die jeweils gültigen Richtlinien der stahl-, metall- und glasverarbeitenden Industrie hingewiesen. Ebenso weisen wir auf die Beachtung der jeweiligen Normen hin. Die nachfolgend genannten Normen und Regelwerke, ebenso das Anschriftenverzeichnis stellen nicht den Anspruch auf Vollzähligkeit. Im Zuge der europäischen Harmonisierung von Normen und Regelwerken sind europäische Normen bereits eingeführt oder werden noch eingeführt. Diese ersetzen teilweise nationale Normen. Wir sind bemüht, unsere Verarbeiter über Änderungen im Normungsbereich auf dem Laufenden zu halten. Dennoch liegt es im Verantwortungsbereich des Anwenders, sich über den aktuellen Stand der Normen und Regelwerke zu informieren, die für seine Leistung von Wichtigkeit sind.

Technische Beratung, Unterstützung bei Planung und Angebot

Sämtliche Anregungen, Ausschreibungs-, Konstruktionsund Einbauvorschläge, Materialkalkulationen, statische Berechnungen, usw. die im Rahmen von Beratungen, Schriftwechseln oder Ausarbeitungen von Stabalux Mitarbeitern gemacht werden, erfolgen nach bestem Wissen und Gewissen und sind als unverbindliche Nebenleistungen von Verarbeitern kritisch zu überprüfen und gegebenenfalls vom Bauherrn oder Architekten zu genehmigen.

Anforderungen an Betrieb, Lagerung und Verarbeitung, Schulungen

Eine wichtige Voraussetzung für die einwandfreie Fertigung von Bauteilen ist die Einrichtung des Betriebes mit Vorrichtungen, die auf die Bearbeitung bzw. Verarbeitung von Stahl und Aluminium ausgerichtet ist. Diese Einrichtungen müssen so beschaffen sein, dass Beschädigungen der Profile während der Bearbeitung, Lagerung und Entnahme vermieden werden. Alle Bauteile sind trocken zu lagern, insbesondere Bauschmutz, Säuren, Kalk, Mörtel, Stahlspäne usw. sind von ihnen fernzuhalten. Es ist erforderlich, den Mitarbeitern die notwendige Weiterbildung durch Literatur, Schule oder Seminare zu ermöglichen, um dem jeweils neuesten Stand der Technik gerecht zu werden.

Sämtliche Maße sind vom Verarbeitungsbetrieb alleinverantwortlich zu ermitteln. Es ist auch erforderlich, statische Berechnungen für beanspruchte Profile und Verankerungen vorzunehmen und prüfen zu lassen und Details und Anschlüsse usw. durch Zeichnungen zu belegen.

Glas

Die einzusetzenden Glasarten richten sich nach den vorgeschriebenen bautechnischen Anforderungen. Die Glasdicken sind unter Berücksichtigung der Windbelastung nach den Vorgaben der "Technischen Regel für die Verwendung von linienförmig gelagerten Verglasungen" zu dimensionieren.

Die Verglasung ist sach- und fachgerecht nach den entsprechenden Normen vorzunehmen.

Reinigung / Instandhaltung

Die Reinigung der Fassade selbst gehört nicht zur Instandhaltung, ist aber Grundvoraussetzung für die Funktionsfähigkeit und Lebensdauer der Produkte.

Reinigung und Schutz während der Bauphase

- Während der Bauphase obliegt die Reinigung dem Auftragnehmer. Die montierten Elemente sollen vor Abnahme gründlich gereinigt werden.
- Grobe Verunreinigungen sind sofort mit ausreichender Wassermenge zu entfernen.
- Werden Reinigungsmittel benötigt, müssen diese auf die verwendeten Materialien abgestimmt sein.
- Dichtstoffrückstände können mit handelsüblichen Lösungsmitteln wie Spiritus oder Isopropanol entfernt werden.
- Anodisierte Aluminiumteile müssen vor Einwirkung von nicht abgebundenem Putz, Mörtel und Zement geschützt werden bzw. diese müssen sofort entfernt werden, da sonst durch alkalische Reaktionen Verfärbungen entstehen, die nicht mehr zu beseitigen sind.
- Mechanische Beschädigungen der Eloxaloberfläche können nicht ausgebessert werden, daher empfiehlt sich eine sorgfältige Handhabung der Aluminiumteile.

Allgemeine Verarbeitungsrichtlinien

<u>9.1</u>

 Daher empfehlen wir geeignete Schutzmaßnahmen. Kunststoffklebefolien, Abziehlacke oder selbstverwitternde Klarlacke bilden einen gewissen Schutz. Verwendete Klebebänder müssen mit den Oberflächen verträglich sein, worauf besonders bei lackierten Flächen zu achten ist.

Reinigung nach der Abnahme und während der dauerhaften Nutzung

Nach der Abnahme bzw. schon nach der Teilabnahme fällt die sachgerechte Reinigung in die Verantwortung des Auftraggebers und es sollte eine intensive Grundreinigung aller zugänglichen Bestandteile erfolgen.

- Reinigung mit viel sauberem, warmem Wasser um einen Scheuereffekt durch die Schmutzpartikel zu vermeiden
- Entfernen von Aufklebern und Distanzplättchen.
- Unterstützend wirken neutrale Haushalts- (PH-Werte zwischen 5 und 8) und Glasreiniger. Laugen, Säuren und fluoridhaltige chemische Reiniger dürfen nicht eingesetzt werden. Auf keinen Fall darf der Korrosionsschutz der Bauteile zerstört werden.
- Fett und Dichtstoffrückstände sind mit handelsüblichen Lösungsmitteln zu entfernen (Spiritus, Isopropanol). Die Anwendung von Benzin und anderen Verdünnungsmitteln ist nicht zulässig, da irreparable Schäden verursacht werden können.
- Verwendung von sauberen und weichen Reinigungsschwämmen, Tüchern, Ledern oder Abziehern. Alle kratzenden Gegenstände und abrasive Reinigungsmittel sind ungeeignet und verursachen dauerhafte Schäden.
- Bei beschichteten Gläsern und bei Einscheibensicherheitsgläsern sind unbedingt die Anweisungen des Herstellers einzuhalten.
- Bei lackierten Oberflächen können neutrale Reinigungsmittel mit Politurzusatz verwendet werden (z.B. Autopolitur). Diese Mittel müssen aber silikonfrei sein und sind an unsichtbarer Stelle zu testen.
- In der Regel sind die Dichtungen wartungsfrei.
 Durch spezielle Pflegemilch kann die Dauerhaftigkeit sichergestellt werden und Versprödung des Materials wird verhindert.

 Bei Einbauteilen wie z.B. Fenstern und Türen aus Holz und Aluminium sind im Besonderen die Herstellerangaben zu beachten. Auf jeden Fall sind die Falzräume zu reinigen und Öffnungen zum Wasserablauf frei zu halten.

Reinigungsintervalle

Die Reinigung sollte ja nach Belastungssituation durch die Umwelt regelmäßig durchgeführt werden. Mindestens einmal jährlich ist eine Grundreinigung durchzuführen. Stabalux empfiehlt eine ½-jährliche Reinigung, um das dekorative Aussehen lackierter Oberflächen bzw. der Gesamtstruktur zu erhalten.

Instandhaltung

Fassaden und deren Einbauelemente, wie z.B. Fenster und Türen, müssen dauerhaft ihre Funktion erfüllen. In Landesbauordnungen und der Bauproduktenverordnung sind Forderungen nach Werthaltigkeit sowie die Sicherung gegen Sach- und Personenschäden verankert.

Der Oberbegriff Instandhaltung steht für die Bereiche Wartung/Pflege, Inspektion, Instandsetzung und Verbesserung. Nachfolgend wird näher auf die Themenbereiche Wartung /Pflege und Inspektion eingegangen. Dies sind notwendige Voraussetzungen um die Gebrauchstauglichkeit und sichere Nutzung zu gewährleisten und eine langfristige Werthaltigkeit zu erzielen. Schon bei der Planung einer Baumaßnahme oder Renovierung ist die Zugänglichkeit für die spätere Instandhaltung zu berücksichtigen.

Grundsätzlich verweisen wird auf die VFF-Merkblätter WP.01 bis WP.05 vom Verband der Fenster- und Fassadenhersteller e.V.. Die Merkblätter enthalten auch Hinweise für Fenster / Türen und andere Einbauten sowie Vordrucke für Verträge und Korrespondenzen. Informationen und Vordrucke sind ebenfalls beim ift – Institut für Fenstertechnik Rosenheim erhältlich. Die Anschriften können dem Adressenteil entnommen werden.

Allgemeine Verarbeitungsrichtlinien

9.1 1

Verpflichtung zu Wartung/Pflege und Inspektion

Der Fassadenhersteller (Auftragnehmer) übernimmt nach der Abnahme im Rahmen der vertraglichen Verpflichtungen die Gewährleistung für die gelieferten und eingebauten Produkte. Entstehen Mängel und Schäden aufgrund fehlender bzw. unsachgemäßer Wartung und Pflege entfällt die Gewährleistungsverpflichtung. Dies gilt auch bei nicht bestimmungsgemäßer Verwendung des Bauteils.

Gibt es keine gesonderten Vereinbarungen, ist der Auftragnehmer nicht automatisch zu Wartung/Pflege und Inspektion verpflichtet. Grundsätzlich obliegt dem Bauherren/Eigentümer gemäß Landesbauordnungen die Instandhaltung der Bauprodukte und Bauteile. Ist der Bauherr/Eigentümer nicht Auftraggeber, so muss dieser vom Auftraggeber informiert werden. Für den Auftragnehmer bleibt stets der Auftraggeber Ansprechpartner.

Jedoch ist der Auftragnehmer verpflichtet dem Auftraggeber gegenüber auf die Instandhaltung hinzuweisen. Empfehlenswert ist, dies bereits in Schriftform vor Vertragsabschluss zu tun und ggf. mit dem Baufortschritt zu detaillieren. Spätestens mit der Schlussrechnung sind die kompletten Unterlagen zum Thema zu übergeben. Alternativ kann der Auftragnehmer einen Wartungsvertrag anbieten und vertraglich definierte Leistungen zu Wartung/Pflege und Inspektion übernehmen. Die Verpflichtung zur Durchführung von Instandhaltungsmaßnahmen beginnt mit der Abnahme.

Maßnahmen der Instandhaltung

Alle Bauteile müssen auf Ihre Gebrauchstauglichkeit, Verformungen und Beschädigungen untersucht werden. Alle Sicherheitsrelevanten Einrichtungen sind zu prüfen. Schäden sind unverzüglich zu beheben.

Fassaden Festverglasung

- Materialspezifische Prüfung der Tragprofile auf Beschädigungen und Verformungen. z.B.: Metall: Schweißnähte, offene Fugen, Risse, mechanische Festigkeit.
- Holz: Holzfehler (lose Äste und hervortretende Astdübel); Feuchtigkeitsschäden, Pilz- und/oder Insektenbefall, offene Fugen, Risse, mechanische Festigkeit.
- Prüfung der Bauteilverbindungen (z.B. Pfosten-Riegel-Verbindungen), Befestigungen und Bauanschlüsse (z.B. Anschlussbleche, etc. soweit im eingebauten Zustand zugänglich).
- Kontrolle der Bauanschlussfugen und Abdichtungen.
- Begutachtung der Füllungen (Gläser, Paneele) auf ordnungsgemäßen Sitz und Beschädigungen.
- Kontrolle der Dichtungen auf einwandfreien Sitz, Dichtfunktion und Alterung durch Versprödung.
- Prüfung der Klemmverbindung zur Lagerung der Füllelemente. Dazu zählen die Verschraubungen und Klipsleisten.
- Sichtkontrolle der Oberflächen der Konstruktion (Beschichtungen, Korrosion).
- Funktionalität der Entwässerung, Bauteilbelüftung und Dampfdruckausgleichsöffnungen prüfen.

Allgemeine Verarbeitungsrichtlinien

9.1 1

Bewegliche Fassadenteile

In Fassaden werden neben Fenstern und Türen auch Rollläden, Lüftungen, beweglicher bzw. starrer Sonnenschutz eingebaut. Diese Bauteile sind entsprechend den Festverglasungen zu prüfen. Zusätzlich sind alle Sicherheitsrelevanten und beweglichen Teile auf Sitz, Funktionalität und Verschleiß zu begutachten. Hierzu zählen z.B.:

- Antriebe (manuell, elektrisch).
- Beschläge.
- Türbänder.
- Verschlussteile und Verriegelungen.
- Schraubverbindungen.
- Gangbarhaltung beweglicher Teile durch Schmieren/ Fetten.

Bei allen Einbauteilen sind im Besonderen die Herstellerangaben zu beachten.

Inspektionsintervalle

Die nachfolgende Tabelle zeigt eine Empfehlung von Inspektionsintervallen die als Hilfestellung vom ift Rosenheim veröffentlicht wurde. Die Unterscheidung in "sicherheitsrelevante" und "allgemeine" Inspektion bezieht sich auf Beschläge.

Stabalux empfiehlt für Festverglasungen ein Intervall von einem Jahr

Bei Einbauten sind die Herstellerangaben maßgebend. VFF-Merkblatt WP.03 bietet Formularvorlagen für instandzuhaltende Bauteile und Intervalle mit eingesetzten Materialien.

Empfehlung für Inspektionsintervalle							
Sicherheitsrelevante Inspektion Allgemeine Inspektion							
Schul- oder Hotelbauten	½-jährlich	½-jährlich / jährlich					
Büro- und öffentliche Bauten	½-jährlich / jährlich	jährlich					
Wohnungsbau	jährlich / 2-jährlich	jährlich / 2-jährlich / Maßnahmen nach Anforderung des Auftraggebers					

Protokoll der Instandhaltung

Die Ergebnisse der Inspektion, durchgeführte Wartung und Pflege sowie erforderliche Instandsetzungsmaßnahmen sind zu protokollieren. Dabei sind alle geprüften Teile/Bauteile zu listen, spezifische und allgemeine Bemerkungen ergänzend festzuhalten. Um eine eindeutige Zuordnung zu gewährleisten, sind stets Daten zum Objekt, des Bauteils und der exakten Lage im Gebäude aufzunehmen.

VFF-Merkblatt WP.03 bietet auch hierzu Formularvorlagen.

Produktunterlagen

Alle notwendigen Informationen zu den Stabalux Systemen finden Sie in unseren Katalogunterlagen. Im Besonderen beinhalten die Kapitel "System" und "Verarbeitungshinweise" wichtige Informationen.

Bei anderen Bauteilen sind die Produktinformationen, Bedienungsanleitungen, Wartungs-/Pflegeanleitungen und Empfehlungen zur Reinigung des jeweiligen Herstellers zu beachten.

Adressen $\frac{9.1}{2}$

Verband der Fenster- und Fassadenhersteller e.V.

Walter-Kolb-Straße 1-7 60594 Frankfurt am Main www.window.de

Informationsstelle Edelstahl Rostfrei

Sohnstr. 65 40237 Düsseldorf www.edelstahl-rostfrei.de

DIN Deutsches Institut für Normung e.V.

Burggrafenstraße 6 10787 Berlin www.din.de

Institut für Fenstertechnik e.V. (ift)

Theodor-Gietl-Straße 7-9 83026 Rosenheim www.ift-rosenheim.de

DIN-Normblätter erhältlich beim Beuth-Verlag GmbH

Burggrafenstraße 6 10787 Berlin www.beuth.de

Bundesverband Metall-Vereinigung

Deutscher Metallhandwerke Ruhrallee 12 45138 Essen www.metallhandwerk.de

Deutsches Institut für Bautechnik

Kolonnenstraße 30 L 10829 Berlin www.dibt.de

IFBS-Industrieverband für Bausysteme im Metallleichtbau

Max-Planck-Str. 4 40237 Düsseldorf www.ifbs.de

GDA, Gesamtverband der Aluminiumindustrie e.V.

Am Bonneshof 5 40474 Düsseldorf www.aluinfo.de

Bundesinnungsverband des Glaserhandwerks

An der Glasfachschule 6 65589 Hadamar www.glaserhandwerk.de

Beratung Feuerverzinken

Sohnstr. 40 40237 Düsseldorf

Deutsche Forschungsgesellschaft für Oberflächenbehandlung e.V.

Arnulfstr. 25 40545 Düsseldorf www.dfo-online.de

Schweißtechnische Lehr- und Versuchsanstalt Duisburg des Dt. Verbandes für Schweißtechnik e.V.

Postfach 10 12 62 47012 Duisburg www.slv-duisburg.de

Deutscher Stahlbauverband DSTV

Sohnstraße 65 40237 Düsseldorf www.deutscherstahlbau.de

DVS – Deutscher Verband für Schweißen und verwandte Verfahren e.V.

Aachener Straße 172 40223 Düsseldorf www.die-verbindungs-spezialisten.de

Deutscher Schraubenverband e.V

Goldene Pforte 1 58093 Hagen www.schraubenverband.de

Studiengesellschaft Stahlanwendung e.V.

Sohnstr. 65 40237 Düsseldorf www.stahlforschung.de

Stahl-Informations-Zentrum

Postfach 10 48 42 40039 Düsseldorf www.bauen-mit-stahl.de

Passivhaus Institut Dr. Wolfgang Feist

Rheinstr. 44/46 64283 Darmstadt www.passiv.de

Normen $\frac{9.1}{3}$

Verzeichnis zu beachtender Normen und Regelwerke

DIN EN 1991	Eurocode 1, Einwirkungen auf Tragwerke
DIN EN 1993	Eurocode 2, Bemessung und Konstruktion von Stahlbauten
DIN EN 1995	Eurocode 3, Bemessung und Konstruktion von Holzbauten
DIN EN 1999	Eurocode 9, Bemessung von Konstruktion von Aluminiumtragwerken
DIN EN 572	Glas im Bauwesen
DIN EN 576	Aluminium, Reinaluminium und Reinaluminium im Halbzeug
DIN EN 573	Aluminium und Aluminiumlegierungen - Chemische Zusammensetzung und Form von Halbzeug
DIN EN 485	Bleche und Bänder aus Aluminium
DIN EN 755	Aluminium und Aluminiumlegierungen - Stranggepresste Stangen, Rohre und Profile
DIN 1960	Verdingungsordnung für Bauleistungen VOB Teil A
DIN 1961	Verdingungsordnung für Bauleistungen VOB Teil B
DIN 4102	Brandverhalten von Baustoffen und Bauteilen
DIN 4108	Wärmeschutz im Hochbau
DIN 4109	Schallschutz im Hochbau
DIN EN 12831	Heizungsanlagen in Gebäuden - Verfahren zur Berechnung der Norm-Heizlast
DIN 7863	Nichtzellige Elastomere-Dichtprofile im Fenster- und Fassadenbau
DIN 16726	Kunststoffbahnen - Prüfungen
DIN EN 10025	Warmgewalzte Erzeugnisse aus Baustählen
DIN EN 10250	Freiformschmiedestücke aus Stahl für allgemeine Verwendung
DIN 17611	Anodisch oxidiertes Halbzeug aus Aluminium
DIN EN 12020	Aluminium und Aluminiumlegierungen – Stranggepresste Präzisionsprofile aus Legierungen
	EN AW-6060 und EN AW-6063
DIN 18055	Anforderungen und Empfehlungen an Fenster und Außentüren
DIN 18273	Baubeschläge - Türdrückergarnituren für Feuerschutztüren und Rauchschutztüren -
	Begriffe, Maße, Anforderungen und Prüfungen
DIN 18095	Rauchschutztüren
DIN 18195	Bauwerksabdichtungen
DIN 18202	Toleranzen im Hochbau - Bauwerke
DIN 18203	Toleranzen im Hochbau
DIN 18335	VOB Vergabe- und Vertragsordnung für Bauleistungen Teil C: Allgem. Techn. Vertragsbe-
	dingungen für Bauleistungen (ATV) - Stahlbauarbeiten
DIN 18336	VOB Vergabe- und Vertragsordnung für Bauleistungen Teil C: ATV - Abdichtungsarbeiten
DIN 18357	VOB Vergabe- und Vertragsordnung für Bauleistungen Teil C: ATV - Beschlagarbeiten
DIN 18360	VOB Vergabe- und Vertragsordnung für Bauleistungen Teil C: ATV - Metallbauarbeiten
DIN 18361	VOB Vergabe- und Vertragsordnung für Bauleistungen Teil C: ATV - Verglasungsarbeiten
DIN 18364	VOB Vergabe- und Vertragsordnung für Bauleistungen Teil C: ATV - Korrosionsschutz-
	arbeiten an Stahlbauten
DIN 18421	VOB Vergabe- und Vertragsordnung für Bauleistungen Teil C: ATV - Dämm- und Brand-
	schutzarbeiten an technischen Anlagen
DIN 18451	VOB Vergabe- und Vertragsordnung für Bauleistungen Teil C: ATV - Gerüstarbeiten
DIN 18516	Außenwandverkleidungen, hinterlüftet
DIN 18540	Abdichten von Außenwandfugen im Hochbau mit Fugendichtstoffen
DIN 18545	Abdichten von Verglasungen mit Dichtstoffen

Normen $\frac{9.1}{3}$

Verzeichnis zu beachtender Normen und Regelwerke

DIN EN ISO 1461	Durch Feuerverzinken auf Stahl aufgebrachte Zinküberzüge (Stückverzinken)
DIN EN 12487	Korrosionsschutz von Metallen - Gespülte und no-rinse Chromatierüberzüge auf Aluminium
	und Aluminiumlegierungen
DIN EN ISO 10140	Akustik - Messung der Schalldämmung von Bauteilen im Prüfstand
DIN EN 356	Glas im Bauwesen - Sicherheitssonderverglasung - Prüfverfahren und Klasseneinteilung
	des Widerstandes gegen manuellen Angriff
DIN EN 1063	Glas im Bauwesen - Sicherheitssonderverglasung - Prüfverfahren und Klasseneinteilung für
	den Widerstand gegen Beschuß
DIN EN 13541	Glas im Bauwesen - Sicherheitssonderverglasung - Prüfverfahren und Klasseneinteilung
	des Widerstandes gegen Sprengwirkung
DIN 52460	Fugen- und Glasabdichtungen
DIN EN ISO 12567	Wärmetechnisches Verhalten von Fenstern und Türen - Bestimmung des
	Wärmedurchgangskoeffizienten mittels des Heizkastenverfahrens
DIN EN ISO 12944	Beschichtungsstoffe - Korrosionsschutz von Stahlbauten durch Beschichtungssysteme
DIN 55634	Beschichtungsstoffe und Überzüge - Korrosionsschutz von tragenden dünnwandigen
	Bauteilen aus Stahl
DIN EN 107	Prüfverfahren für Fenster, mechanische Prüfung
DIN EN 1026	Fenster und Türen – Luftdurchlässigkeit – Prüfverfahren
DIN EN 1027	Fenster und Türen – Schlagregendichtheit - Prüfverfahren
DIN EN 10162	Kaltprofile aus Stahl - Technische Lieferbedingungen - Grenzabmaße und Formtoleranzen
DIN EN 949	Fenster, Türen, Dreh- und Rolläden, Vorhangfassaden - Ermittlung der
	Widerstandsfähigkeit von Türen gegen Aufprall eines weichen und schweren Stoßkörpers
DIN EN 1363	Feuerwiderstandsprüfungen
DIN EN 1364	Feuerwiderstandsprüfungen für nichttragende Bauteile
DIN EN 1522	Fenster, Türen, Abschlüsse - Durchschusshemmung - Anforderung und Klassifizierung
DIN EN 1523	Fenster, Türen, Abschlüsse - Durchschusshemmung - Prüfverfahren
DIN EN 1627	Türen, Fenster, Vorhangfassaden, Gitterelemente und Abschlüsse - Einbruchhemmung -
	Anforderungen und Klassifizierung
DIN EN 1628	Türen, Fenster, Vorhangfassaden, Gitterelemente und Abschlüsse - Einbruchhemmung -
	Prüfverfahren für die Ermittlung der Widerstandsfähigkeit unter statischer Belastung
DIN EN 1629	Türen, Fenster, Vorhangfassaden, Gitterelemente und Abschlüsse - Einbruchhemmung -
	Prüfverfahren für die Ermittlung der Widerstandsfähigkeit unter dynamischer Belastung
DIN EN 1630	Türen, Fenster, Vorhangfassaden, Gitterelemente und Abschlüsse - Einbruchhemmung -
	Prüfverfahren für die Ermittlung der Widerstandsfähigkeit gegen manuelle Einbruchversuche
DIN EN 10346	Kontinuierlich schmelztauchveredelte Flacherzeugnisse aus Stahl
DIN EN 10143	Kontinuierlich schmelztauchveredeltes Blech und Band aus Stahl -
	Grenzabmaße und Formtoleranzen
DIN EN 12152	Vorhangfassaden – Luftdurchlässigkeit – Leistungsanforderungen und Klassifizierung
DIN EN 12153	Vorhangfassaden – Luftdurchlässigkeit – Prüfverfahren

Normen $\frac{9.1}{3}$

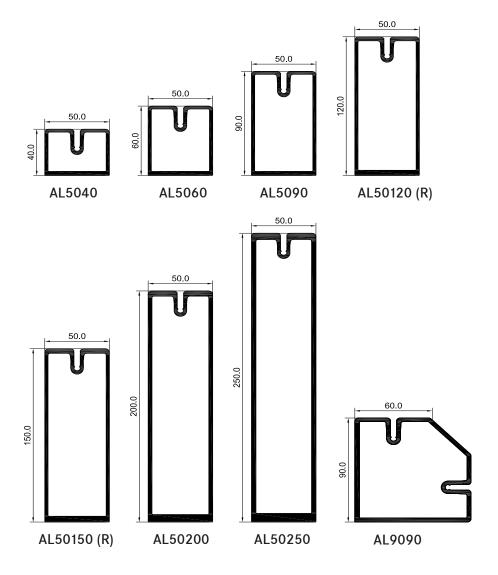
Verzeichnis zu beachtender Normen und Regelwerke

DIN EN 12154	Vorhangfassaden – Schlagregendichtheit – Leistungsanforderungen und Klassifizierung
DIN EN 12155	Vorhangfassaden - Schlagregendichtheit - Laborprüfung unter Aufbringung von
	statischem Druck
DIN EN 12179	Vorhangfassaden - Widerstand gegen Windlast - Prüfverfahren
DIN EN 12207	Fenster und Türen – Luftdurchlässigkeit – Klassifizierung
DIN EN 12208	Fenster und Türen – Schlagregendichtheit – Klassifizierung
DIN EN 12210	Fenster und Türen – Widerstandsfähigkeit bei Windlast – Klassifizierung
DIN EN 12211	Fenster und Türen – Widerstandsfähigkeit bei Windlast – Prüfverfahren
DIN EN 13116	Vorhangfassaden - Widerstand gegen Windlast - Leistungsanforderungen
DIN EN 13830	Vorhangfassaden - Produktnorm
DIN EN 14019	Vorhangfassaden – Stoßfestigkeit
DIN EN ISO 12631	Wärmetechnisches Verhalten von Vorhangfassaden – Berechnung des Wärmedurchgangs-
	koeffizienten - Vereinfachtes Verfahren
DIN 18200	Übereinstimmungsnachweis für Bauprodukte – Werkseitige Produktionskontrolle,
	Fremdüberwachung und Zertifizierung von Produkten
DIN 1249	Flachglas im Bauwesen; Glaskanten; Kantenform und Ausführung
DIN EN 485	Aluminium und Aluminiumlegierungen - Bänder, Bleche und Platten
DIN EN 1748	Glas im Bauwesen - Spezielle Basiserzeugnisse
DIN 52210	Bauakustische Prüfungen - Luft- und Trittschalldämmung, Bestimmung der
	Schachtpegeldifferenz
DIN 52619	Wärmeschutztechnische Prüfungen, Bestimmung des Wärmedurchlasswiderstandes
	und Wärmedurchgangskoeffizienten von Fenstern, Messung an Rahmen
DIN 18008	Technische Regeln für die Verwendungen von absturzsichernden Verglasungen
DIN 18008	Technische Regeln von linienförmig gelagerten Verglasungen
GEG	Gebäudeenergiegesetz

Richtlinie für die Planung und Ausführung von Dächern mit Abdichtungen

Internationale Qualitätsrichtlinien für Bauteilbeschichtungen auf Stahl und feuerverzinktem Stahl; GSB International e.V.

Technische Richtlinien des Bundesinnungsverbandes des Glaserhandwerks


Merkblätter des Stahl-Informations-Zentrums, Düsseldorf

Merkblätter des Verbandes der Fenster- und Fassadenhersteller, Frankfurt am Main

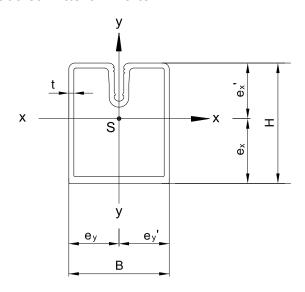
Aluminiumprofile - 50 mm

Profilübersicht

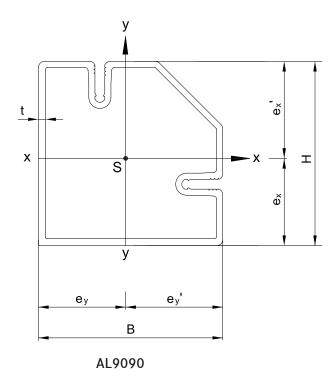
9.2 1

Qualität der Aluminiumprofile

Aluminium


- Die von uns gelieferten Aluminiumprofile werden in der Regel aus EN AW 6060 nach DIN EN 573-3, Zustand T 66 nach DIN EN 755-2, hergestellt.
- Die Rohre werden nach den Toleranznormen DIN ISO 2768 gefertigt.
- Materialkennwerte:

Streckgrenze $f_{y,k} = 160 \text{ N/mm}^2$ Elastizitätsmodul $E = 70000 \text{ N/mm}^2$ Schubmodul $E = 26100 \text{ N/mm}^2$ Temperaturdehnzahl $\alpha_T = 24 \times 10^{-6} \text{ N/mm}^2$


Schraubrohre

 $\frac{9.2}{1}$

Geometrie der Querschnitte und Querschnittskennwerte

AL5060

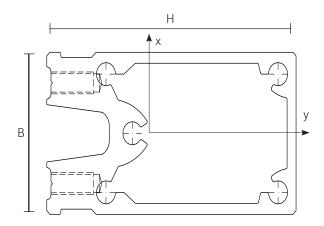
Wissenswertes **Statische Vorbemessung**

Schraubrohre

9.2 1

Querschnittswerte

Profil - Nummer	н	В	t min	t max	U	U _B 1)	g	А	e _y	e _y '	I _y	e _x	e _x '	I _x
-	mm	mm	mm	mm	m²/m	m²/m	kg/m	cm²	cm	cm	cm⁴	cm	cm	cm⁴
AL 5040	40	50	2,5	3,5	0,214	0,133	1,51	5,61	2,50	2,50	15,77	2,05	1,95	12,23
AL 5060	60	50	2,5	3,5	0,254	0,173	1,78	6,61	2,50	2,50	21,42	3,03	2,97	33,14
AL 5090	90	50	2,5	3,5	0,314	0,223	2,18	8,11	2,50	2,50	29,89	4,61	4,39	89,83
AL 50120	120	50	2,5	4,5	0,374	0,293	2,81	10,41	2,50	2,50	39,87	6,10	5,90	208,52
AL 50150	150	50	2,5	5	0,434	0,353	3,32	12,32	2,50	2,50	49,12	7,61	7,39	380,78
AL 50200	200	50	3	6,5	0,534	0,453	4,74	17,56	2,50	2,50	74,10	9,86	10,14	904,95
AL 50250	250	50	3,5	7,5	0,634	0,553	6,40	23,71	2,50	2,50	103,31	12,34	12,66	1806,17
AL9090	90	90	3,0	3,5	0,420	0,207	3,50	12,93	4,26	4,74	138,95	4,26	4,74	138,95


¹⁾ Beschichtungsfläche = sichtbare Fläche im eingebauten Zustand (ohne Schraubkanalseite)

Riegelverbinder

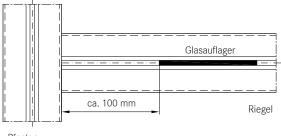
Geometrie der Querschnitte und Querschnittskennwerte

Riegelhalter	Н	В	g	Α	I _y	I _x
-	mm	mm	kg/m	cm²	cm⁴	cm⁴
TVA 5040	33,0	44,4	2,49	9,25	7,28	19,03
TVA 5060	53,0	44,4	2,99	11,10	24,1	28,12
TVA 5090	83,0	44,4	3,48	12,90	31,83	93,10
TVA 50120	111,0	44,4	3,93	14,58	39,04	201,67
TVA 50150	140,0	44,4	4,40	16,32	46,51	371,48

Z.B. Nutzung der Riegelverbinder als Einschub (Meterware) zur Verstärkung der Schraubrohre.

Statische Vorbemessung

Glasauflager


$\frac{9.2}{3}$

Allgemeines

- Glasauflager dienen zur Übertragung der Eigengewichtslasten der Verglasungen in die Riegel eines Fassadensystems.
- Für die Wahl der Glasauflager ist in der Regel die Gebrauchstauglichkeit maßgebend, die durch einen Grenzwert der Glasauflagerdurchbiegung definiert wird.
- Die Tragfähigkeit ist häufig um ein vielfaches höher als die zum Grenzzustand der Gebrauchstauglichkeit gehörenden Last.
- Ein Versagen der Fassadenkonstruktion und somit eine Gefährdung von Personen ist normalerweise ausgeschlossen. Daher werden an die Verwendung von Glasauflagern und der zugehörigen Verbindungen keine besonderen bauaufsichtlichen Anforderungen gestellt.

Die Positionierung der Glasauflager und die Verklotzung erfolgen nach den Richtlinien der Glasindustrie und den Richtlinien des Institutes für Fenstertechnik.

Der Richtwert für die Anbringung der Glasauflager beträgt ca. 100 mm vom Riegelende aus gemessen. Es ist darauf zu achten, dass keine Kollision mit der Verschraubung der Klemmverbindung eintritt. Weitere Angaben im Kapitel 1.2.7 – Verarbeitungshinweise sind zu beachten.

Pfosten

Die von der Firma Stabalux lieferbaren Glasauflager wurden hinsichtlich der Tragfähigkeit und der Gebrauchsfähigkeit mittels Bauteilversuchen getestet. Hierzu wurde das Ingenieursbüro IPU Karlsruhe beauftragt. Die Versuche wurden an der Versuchsanstalt für Stahl, Holz und Steine des Karlsruher Instituts für Technologie (KIT) durchgeführt.

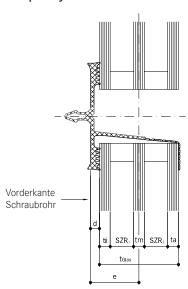
Als Grenzwert der Glasauflagerdurchbiegung wurde die gemessene Durchbiegung f_{max} = 3 mm unter dem theoretischen Angriffspunkt des resultierenden Scheibengewichtes angesetzt. Die Lage des Angriffspunktes wird über die Exzentrizität "e" erfasst.

Glasauflagertypen

Im System Stabalux AL werden zwei unterschiedliche Typen bei der Befestigung der Glasauflager unterschieden:

- Einsteckglasauflager GH 5101 und GH 5102. Die Geometrie der Glasauflager ist in der Art, dass diese in den Schraubkanal gesteckt werden können und keine weitere Fixierung oder Befestigung benötigen.
- Einschraubglasauflager GH 5201 und GH 5202. Die Lastableitung erfolgt durch eine Schraubverbindung im Schraubkanal des Schraubrohres. Diese sind mit der Innendichtung GD 5203 zulässig und müssen durch den Schraubkanal durchgeschraubt werden.

Angaben zu den Aluminiumprofilen sind dem Kapitel 9.2.1 – Querschnitte zu entnehmen.


Exzentrizität "e"

Die Höhe der inneren Dichtung und der Glasaufbau bzw. der Schwerpunkt der Glasscheibe bestimmen die Exzentrizität "e". Das Maß "e" bezeichnet den Abstand zwischen der Vorderkante des Schraubrohres und der theoretischen Lasteinleitungslinie.

9.2 3

Darstellung Glasaufbau / Verwendete Abkürzungen

Symmetrischer Glasaufbau Beispiel System AL

d = Höhe der inneren Dichtung

t_{Glas} = Gesamtglasdicke

ti = Glasdicke innere Scheibe

tm = Glasdicke mittlere Scheibe

= Glasdicke äußere Scheibe

SZR, = Scheibenzwischenraum 1

SZR₂ = Scheibenzwischenraum 2

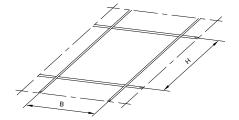
a₁ = Abstand Vorderkante Stahlprofil
 zur Mitte innere Scheibe

a₂ = Abstand Vorderkante Stahlprofil
 zur Mitte mittlere Scheibe

a₃ = Abstand Vorderkante Stahlprofil
 zur Mitte äußere Scheibe

G = Scheibengewicht

G_i = Lastanteil


<u>9.2</u>

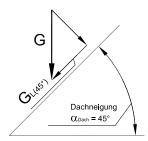
Ermittlung des zulässigen Scheibengewichtes

1. Ermittlung des Scheibengewichtes

Fläche der Scheibe = B x H in [m²] Summe Glasdicke = ti + tm + ta [m] Spezifisches Glasgewicht = $\gamma \approx 25,0$ [kN/m³]

→ Scheibengewicht [kg] = $(B \times H) \times (ti + tm + ta) \times \gamma \times 100$

2. Ermittlung des Lastanteils auf die Glasauflager


Bei Vertikalverglasung liegt der Lastanteil des Glasgewichtes bei 100 %.

Bei Schrägverglasung verringert sich der Lastanteil in Abhängigkeit vom Winkel.

\rightarrow Scheibengewicht [kg] x sin(α)

Bei gegebenem Neigungswinkel können Sie den Sinuswert aus **Tabelle 5** entnehmen.

Bei gegebener prozentualen Neigung können Sie den Sinuswert aus **Tabelle 6** entnehmen.

3. Ermittlung der Exzentrizität

System AL

Symmetrischer Glasaufbau

$$e = d + (ti + SZR + tm + SZR + ta)/2$$

Unsymmetrischer Glasaufbau

$$a1 = d + ti/2$$

 $a2 = d + ti + SZR1 + tm/2$
 $a3 = d + ti + SZR1 + tm + SZR2 + ta/2$
 $e = (ti \times a1 + tm \times a2 + ta \times a3)/(ti + tm + ta)$

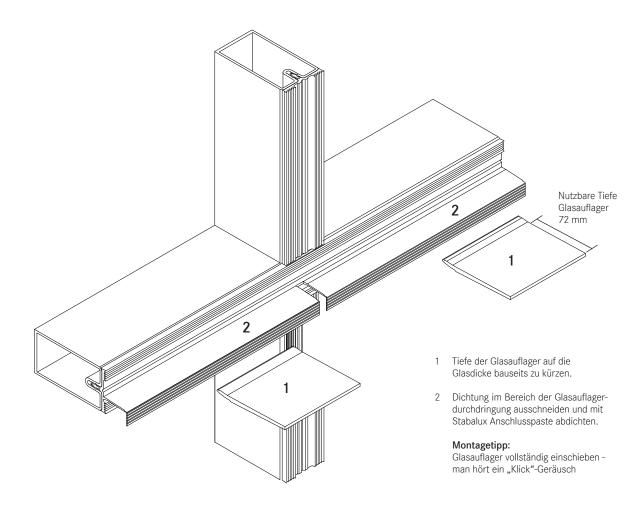
4. Prüfung

Mit der ermittelten Exzentrizität "e" kann das zulässige Scheibengewicht aus den **Tabellen 1 - 4** entommen werden.

Hinweis:

Bei symmetrischem Glasaufbau lässt sich die Exzentrizität mit Hilfe der **Tabellen 1 - 4** bestimmen.

9.2 3


Zulässige Scheibengewichte

- Die zulässigen Scheibengewichte k\u00f6nnen aus Tabelle 1, Tabelle 2, Tabelle 3 und Tabelle 4 abgelesen werden.
- Neben dem Glasaufbau und der Höhe der inneren Dichtung werden die zulässigen Scheibengewichte durch die Breite der Glasauflager, die Wanddicke der Aluminiumprofile und der Pfosten-Riegelverbindung beeinflusst.
- Die Ermittlung der Tabellenwerte für die zulässigen Scheibengewichte basiert auf einer Vielzahl von Versuchen. Bei der Kombination Einsteckglasauflager/geschraubte Pfosten-Riegelverbindung werden zusätzlich die Ergebnisse zweier Versuchsreihen überlagert. Die Lastverformungskurven aus den Versuchen wurden in drei Intervallen linearisiert. Durch die Verwendung der 5%-Fraktilwerte ist sichergestellt, dass die linearisierten Lastverformungskurven auf der sicheren Seite abgebildet werden. Um die Lastverformungskurven für beliebige Exzentrizitäten zwischen 15 mm und 32 mm zu erhalten, wurden Extrapolationsformeln angewendet, die sichere Werte liefern. Daraus ergeben sich mit wachsender Exzentrizität teilweise wieder ansteigende zulässige Scheibengewichte.

<u>9.2</u>

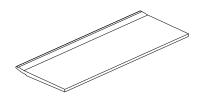
Einsteckglasauflager

- Die geprüften Systemteile bestehen aus den Einsteckglasauflagern GH 5101 und GH 5102, die sich durch ihre Auflagerbreite unterscheiden.
- Die Geometrie der Glasauflager ist in der Art, dass diese in den Schraubkanal gesteckt werden können und keine weitere Fixierung oder Befestigung benötigen.
- Die nutzbare Tiefe des Glasauflagers beträgt
 T = 72 mm und ist je nach verwendeter Glasdicke und Höhe der inneren Dichtung zuzuschneiden.
- Die Glasauflager werden aus Aluminium der Güte EN AW 6060 T66 gefertigt.
- Beträgt die Länge des Glasauflagers mehr als 100 mm sind zur gleichmäßigen Lastenverteilung der Glasauflager Klötze über die gesamte Länge des Glasauflagers zu legen.

Wissenswertes **Statische Vorbemessung**

 $\frac{9.2}{3}$

Tabelle 1: GH 5101

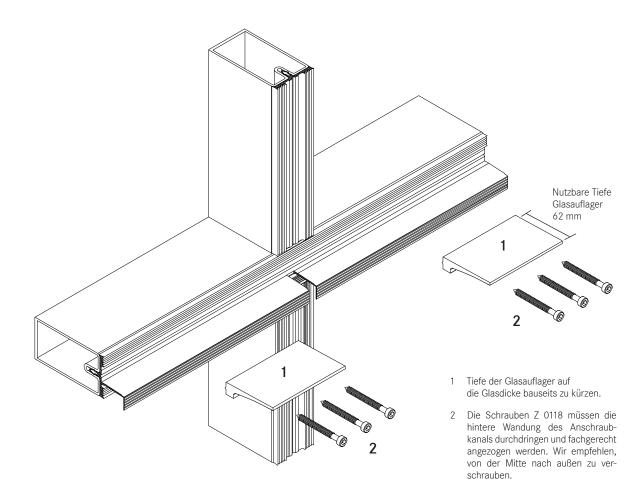

Zeile	Höhe der		Exzentrizität "e"	Zulässiges Scheibengewicht G (kg) Riegelprofil aus Aluminium				
	Innend 5	ichtung 12		AL 5040	AL 5060 / 5090 / 50120	AL 50150 / 50200 / 50250		
	mm	mm	mm	kg	kg	kg		
1	≤ 20	≤ 6	15	352	508	485		
2	22	8	16	347	498	476		
3	24	10	17	341	489	468		
4	26	12	18	335	479	460		
5	28	14	19	330	469	451		
6	30	16	20	324	459	443		
7	32	18	21	319	449	434		
8	34	20	22	313	439	426		
9	36	22	23	307	429	417		
10	38	24	24	302	419	409		
11	40	26	25	296	409	400		
12	42	28	26	291	399	392		
13	44	30	27	285	389	384		
14	46	32	28	279	379	375		
15	48	34	29	274	370	367		
16	50	36	30	268	360	358		
17	52	38	31	263	350	350		
18	54	40	32	257	340	341		
19	56	42	33	251	330	333		
20	58	44	34	246	320	325		
21	60	46	35	240	310	316		
22	62	48	36	235	300	308		
23	64	50	37	229	290	299		
24	66	52	38	223	280	291		
25	68	54	39	218	270	282		
26	70	56	40	212	260	274		
27	72	58	41	206	250	265		
28	74	60	42	201	241	257		

Bei unsymmetrischem Glasaufbau muss das zulässige Scheibengewicht über die Spalte Exzentrizität "e" bestimmt werden.

Wissenswertes **Statische Vorbemessung**

 $\frac{9.2}{3}$

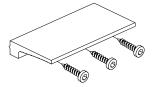
Tabelle 2: GH 5102


Zeile	Gesamtglasdicke t _{Glas} bei Einscheibenglas oder symmetrischem Glasaufbau Höhe der Innendichtung		Exzentrizität "e"	Zulässiges Scheibengewicht G (kg) Riegelprofil aus Aluminium AL 5040 AL 5060 / 5090 / 50120 AL 50150 / 50200 / 50250				
	mm	mm	mm	kg	kg	kg		
1	≤ 20	≤ 6	15	352	498	469		
2	22	8	16	347	490	464		
3	24	10	17	341	481	458		
4	26	12	18	335	473	452		
5	28	14	19	330	464	447		
6	30	16	20	324	455	441		
7	32	18	21	319	447	436		
8	34	20	22	313	438	430		
9	36	22	23	307	430	425		
10	38	24	24	302	421	419		
11	40	26	25	296	413	414		
12	42	28	26	291	404	408		
13	44	30	27	285	395	402		
14	46	32	28	279	387	397		
15	48	34	29	274	378	391		
16	50	36	30	268	370	386		
17	52	38	31	263	361	380		
18	54	40	32	257	353	375		
19	56	42	33	251	344	369		
20	58	44	34	246	335	363		
21	60	46	35	240	327	358		
22	62	48	36	235	318	352		
23	64	50	37	229	310	347		
24	66	52	38	223	301	341		
25	68	54	39	218	293	336		
26	70	56	40	212	284	330		
27	72	58	41	206	275	325		
28	74	60	42	201	267	319		

Bei unsymmetrischem Glasaufbau muss das zulässige Scheibengewicht über die Spalte Exzentrizität "e" bestimmt werden.

<u>9.2</u>

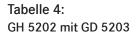
Einschraubglasauflager


- Die geprüften Glasauflager GH 5201 und GH 5202 unterscheiden sich durch ihre Auflagerbreite.
- Die Glasauflager werden direkt mit den Riegeln verschraubt. Da die Verschraubung der Glasauflager im Schraubkanal plus Durchdringung der hinteren Wandung ausgeführt wird, können höhere Gewichte erzielt werden.
- Die Glasauflager eignen sich bei 5 mm Innendichtung, z.B. GD 5203.
- Die nutzbare Tiefe des Glasauflagers beträgt T = 62 mm und ist je nach verwendeter Glasdicke zuzuschneiden.
- Die Glasauflager werden aus Aluminium der Güte EN AW 6060 T66 gefertigt.
- Für die zugehörige Schraubverbindung werden Systemschrauben aus Edelstahl eingesetzt.

Wissenswertes **Statische Vorbemessung**

9.2 3

Tabelle 3: GH 5201 mit GD 5203



Zeile	Gesamtglasdicke t _{Glas} bei Einscheibenglas oder symmetrischem Gla- saufbau Höhe der Innendich-	Exzentrizität "e"	Zulässiges Scheibengewicht G (kg)			
	tung	மி		Riegelhalter (TVA) aus A	Aluminium	
	5		AL 5040	AL 5060 / 5090 / 50120	AL 50150 / 50200 / 50250	
	mm	mm	kg	kg	kg	
1	≤ 20	15	501	588	534	
2	22	16	492	579	526	
3	24	17	484	570	519	
4	26	18	475	560	512	
5	28	19	466	551	504	
6	30	20	458	542	497	
7	32	21	449	533	490	
8	34	22	440	524	483	
9	36	23	432	515	475	
10	38	24	423	521	468	
11	40	25	415	409	461	
12	42	26	406	501	453	
13	44	27	397	491	446	
14	46	28	389	480	439	
15	48	29	380	470	432	
16	50	30	371	460	424	
17	52	31	363	450	417	
18	54	32	354	440	410	
19	56	33	346	430	403	
20	58	34	337	420	395	
21	60	35	328	409	388	
22	62	36	320	399	381	
23	64	37	311	389	373	

Bei unsymmetrischem Glasaufbau muss das zulässige Scheibengewicht über die Spalte Exzentrizität "e" bestimmt werden.

Wissenswertes **Statische Vorbemessung**

 $\frac{9.2}{3}$

Zeile	Gesamtglasdicke t _{Glas} bei Einscheibenglas oder symmetrischem Gla- saufbau	Exzentrizität "e"		Zulässiges Scheibengew	richt G (kg)
7	Höhe der Innendich- tung	Exze		Riegelhalter (TVA) aus A	Aluminium
	5		AL 5040	AL 5060 / 5090 / 50120	AL 50150 / 50200 / 50250
	mm	mm	kg	kg	kg
1	≤ 20	15	501	548	542
2	22	16	492	541	537
3	24	17	484	534	531
4	26	18	475	527	526
5	28	19	466	520	520
6	30	20	458	513	515
7	32	21	449	505	509
8	34	22	440	498	504
9	36	23	432	491	498
10	38	24	423	484	493
11	40	25	415	477	487
12	42	26	406	470	481
13	44	27	397	463	476
14	46	28	389	456	470
15	48	29	380	449	465
16	50	30	371	442	459
17	52	31	363	435	454
18	54	32	354	428	448
19	56	33	346	421	443
20	58	34	337	414	437
21	60	35	328	407	432
22	62	36	320	400	426
23	64	37	311	393	421

Bei unsymmetrischem Glasaufbau muss das zulässige Scheibengewicht über die Spalte Exzentrizität "e" bestimmt werden.

Wissenswertes **Statische Vorbemessung**

Glasauflager

9.2 3

Tabelle 5: Sinus Werte

Winkel (in °)	Sinus	
1	0,017	
2	0,035	
3	0,052	
4	0,070	
5	0,087	
6	0,105	
7	0,122	
8	0,139	
9	0,156	
10	0,174	
11	0,191	
12	0,208	
13	0,225	
14	0,242	
15	0,259	
16	0,276	
17	0,292	
18	0,309	
19	0,326	
20	0,342	

Winkel (in °)	Sinus		
21	0,358		
22	0,375		
23	0,391		
24	0,407		
25	0,423		
26	0,438		
27	0,454		
28	0,469		
29	0,485		
30	0,500		
31	0,515		
32	0,530		
33	0,545		
34	0,559		
35	0,574		
36	0,588		
37	0,602		
38	0,616		
39	0,629		
40	0,643		

Winkel (in °)	Sinus		
41	0,656		
42	0,669		
43	0,682		
44	0,695		
45	0,707		
46	0,719		
47	0,731		
48	0,743		
49	0,755		
50	0,766		
51	0,777		
52	0,788		
53	0,799		
54	0,809		
55	0,819		
56	0,829		
57	0,839		
58	0,848		
59	0,857		
60	0,866		

Winkel (in °)	Sinus
61	0,875
62	0,883
63	0,891
64	0,899
65	0,906
66	0,914
67	0,921
68	0,927
69	0,934
70	0,940
71	0,946
72	0,951
73	0,956
74	0,961
75	0,966
76	0,970
77	0,974
78	0,978
79	0,982
80	0,985

Winkel (in °)	Sinus		
81	0,988		
82	0,990		
83	0,993		
84	0,995		
85	0,996		
86	0,998		
87	0,999		
88	0,999		
89	1,000		
90	1,000		

Tabelle 6: Neigung in % zu Winkel in °

0/	Winkel	
%	(in °)	
1	0,57	
2	1,15	
3	1,72	
4	2,29	
5	2,86	
6	3,43	
7	4,00	
8	4,57	
9	5,14	
10	5,71	
11	6,28	
12	6,84	
13	7,41	
14	7,97	
15	8,53	
16	9,09	
17	9,65	
18	10,20	
19	10,76	
20	11.31	

0/	Winkel	
%	(in °)	
21	11,86	
22	12,41	
23	12,95	
24	13,50	
25	14,04	
26	14,57	
27	15,11	
28	15,64	
29	16,17	
30	16,70	
31	17,22	
32	17,74	
33	18,26	
34	18,78	
35	19,29	
36	19,80	
37	20,30	
38	20,81	
39	21,31	
40	21,80	

%	Winkel	
76	(in °)	
41	22,29	
42	22,78	
43	23,27	
44	23,75	
45	24,23	
46	24,70	
47	25,17	
48	25,64	
49	26,10	
50	26,57	
51	27,02	
52	27,47	
53	27,92	
54	28,37	
55	28,81	
56	29,25	
57	29,68	
58	30,11	
59	30,54	
60	30,96	

%	Winkel		
//0	(in °)		
61	31,38		
62	31,80		
63	32,21		
64	32,62		
65	33,02		
66	33,42		
67	33,82		
68	34,22		
69	34,61		
70	34,99		
71	35,37		
72	35,75		
73	36,13		
74	36,50		
75	36,87		
76	37,23		
77	37,60		
78	37,95		
79	38,31		
80	38,66		

0/	Winkel		
%	(in °)		
81	39,01		
82	39,35		
83	39,69		
84	40,03		
85	40,36		
86	40,70		
87	41,02		
88	41,35		
89	41,67		
90	41,99		
91	42,30		
92	42,61		
93	42,92		
94	43,23		
95	43,53		
96	43,83		
97	44,13		
98	44,42		
99	44,71		
100	45,00		

В

Glasauflager

<u>9.2</u>

Beispiel für die Berechnung Vertikalverglasung unsymmetrischer Glasaufbau

Das folgende Beispiel stellt nur eine Einsatzmöglichkeit der Glasauflager dar ohne Nachweis der übrigen Bauteile im System.

Riegelprofil: Stabalux AL 5060

Riegelhalter: TVA 5060

Format der Glasscheibe: $B \times H = 1,50 \text{ m} \times 2,50 \text{ m} = 3,75 \text{ m}^2$

Glasaufbau:

ti / SZR / ta = 12 mm / 8 mm / 16 mm ti + ta = 28 mm = 0,028 m

 t_{Glas} = 36 mm

spezifisches Gewicht des Glases: $\gamma \approx 25,0 \text{ kN/m}^3$

Scheibengewicht: $G = 3,75 \times 25,0 \times 0,036 = 3,375 \text{ kN} \approx 344 \text{ kg}$

Ermittlung der Exzentrizität "e":

Höhe der inneren Dichtung: d = 5,0 mm

a1 = 5 + 12/2 = 11 mm a2 = 5 + 12 + 8 + 16/2 = 33,0 mm $e = (12 \times 11 + 16 \times 33)/28$ = 23,57 ≈ 24 mm

Ergebnis:

nach Tabelle 4, Zeile 10: zul. G = 376 kg > G = 344 kg Einschra

Einschraubglasauflager GH 5202 | B = 200 mm

<u>9.2</u>

Beispiel für die Berechnung Schrägverglasung symmetrischer Glasaufbau

Das folgende Beispiel stellt nur eine Einsatzmöglichkeit der Glasauflager dar ohne Nachweis der übrigen Bauteile im System.

Neigung der Dachfläche:

 $\alpha_{\text{Dach}} = 30^{\circ}$

Riegelprofil: Stabalux AL 5040

Riegelhalter: TVA 5040

Format der Glasscheibe: $B \times H = 1,25 \text{m} \times 2,00 \text{m} = 2,50 \text{ m}^2$

Glasaufbau: ti / SZR / ta = 10 mm / 16 mm / 10 mm

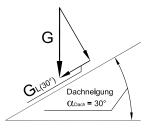
ti + ta = 20 mm = 0.020 m

 $t_{Glas} = 36 \text{ mm}$

Ermittlung des Scheibengewichtes

spezifisches Gewicht des Glases: $\gamma \approx 25,0 \text{ kN/m}^3$

Scheibengewicht: G = $2,50 \times 25,0 \times 0,020 = 1,25 \text{ kN} \approx 127 \text{ kg}$


durch die Dachneigung wirkt folgender

Lastanteil auf die Glasauflager: $G_{L(30^{\circ})}$ = 127 x sin 30° = 63,5 kg

Ermittlung der Exzentrizität "e"

Höhe der inneren Dichtung: d = 10,0 mm

e = 10 + 36/2 = 28 mm

Ergebnis

nach Tabelle 1, Zeile 14: zul. $G = 214 \text{ kg} > G_{L(30^\circ)} = 63,5 \text{ kg}$ Glasauflager GH 5101 | B = 100 mm

nach Tabelle 3, Zeile 14: zul. $G = 304 \text{ kg} > G_{L(30^\circ)} = 63,5 \text{ kg}$ Glasauflager GH 5201 | B = 100 mm

Prüfungen / Zulassungen / CE-Zeichen

Forderung nach geprüften und zugelassenen Produkten

9.3 1

Einführung

Bauherren, Planer und Verarbeiter fordern den Einsatz von geprüften und zugelassenen Produkten. Auch im Baurecht wird gefordert, das Bauprodukte den technischen Regeln der Bauregelliste entsprechen. Für Glasfassaden und Glasdächer sind das u.a. technische Regeln für:

- Standsicherheit.
- Gebrauchstauglichkeit.
- Wärmeschutz.
- Brandschutz.
- Schallschutz.

Diese Nachweise sind für Stabalux Fassaden und Dächer erbracht. Unsere Produktionsstätten und Vorlieferanten sind qualitätszertifiziert und garantieren hervorragende Produktqualität. Darüber hinaus überwacht und prüft das Unternehmen Stabalux GmbH Jaufend seine Produkte

und erbringt zusätzliche Nachweise von Eigenschaften und Sonderfunktionen ihrer Fassadensysteme. Renommierte Prüfanstalten und Institute unterstützen das Unternehmen bei der Qualitätssicherung:

- Institut für Fenstertechnik, Rosenheim.
- Institut f
 ür Stahlbau, Leipzig.
- Materialprüfungsamt NRW, Dortmund.
- Materialprüfanstalt für das Bauwesen, Braunschweig.
- Materialprüfungsanstalt Universität Stuttgart, Stuttgart.
- · Beschussamt, Ulm.
- KIT Stahl- und Leichtbau, Versuchsanstalt für Stahl, Holz und Steine, Karlsruhe.
- Institut für Energieberatung, Tübingen.
- Institut f

 ür W

 ärmeschutz, M

 ünchen.
- und in vielen weiteren europäischen und außereuropäischen Ländern.

Prüfungen / Zulassungen / CE-Zeichen

Übersicht über Prüfungen und Zulassungen

9.3 2

Einführung

Unsere durchgeführten Prüfungen erleichtern dem Verarbeiter den Marktauftritt und sind die Grundlage für die vom Hersteller/Verarbeiter geforderten Bescheinigungen. Voraussetzung für die Nutzung ist die Anerkennung

unserer Allgemeinen Bedingungen für den Gebrauch von Prüfberichten und Prüfzeugnissen. Diese und weitere Vordrucke wie z.B. Übereinstimmungserklärungen stellt die Stabalux GmbH auf Anfrage zur Verfügung.

Ift Icon	Anforderungen nach EN 13830	CE	Info
o n Spenie	Luftdurchlässigkeit	C€	Siehe Produktpass
D It Roperteen	Schlagregendichtheit	C€	Siehe Produktpass
© It Recentary	Widerstandsfähigkeit bei Windlast	C€	Siehe Produktpass
© It Roserbar	Stoßfestigkeit falls ausdrücklich beim CE-Zeichen gefordert	C€	Siehe Produktpass
O Il Rosenbert	Luftschalldämmung falls ausdrücklich beim CE-Zeichen gefordert	C€	Siehe Kap. 9
The state of the s	Wärmedurchgang Angaben für U _{cw} -Wert; vom Systemgeber werkseigene Berechnung der U _f -Werte	C€	auf Anforderung (siehe Kap. 9)
O it Rosenham	Eigenlast nach EN 1991-1-1; vom Hersteller zu bestimmen	C€	durch statischen Nachweis (siehe Kap. 9)
F contraction	Widerstand gegen Horizontallasten die Vorhangfassade muss dynamische Horizon- tallasten nach EN 1991-1-1 aufnehmen; vom Hersteller zu bestimmen	C€	durch statischen Nachweis
o di Atasenhare	Wasserdampfdurchlässigkeit	C€	Nachweis ggfs. im Einzelfall zu führen
1n	Dauerhaftigkeit keine Prüfung erforderlich	C€	Hinweise zur fachgerechten Wartung der Fassade
	Feuerwiderstand falls ausdrücklich beim CE-Zeichen gefordert Klassifizierung nach EN 13501-2; Die europäischen Regelungen sind gleichberechtigt neben den nationalen Regelungen gültig (z.B. DIN 4102). Die Verwendbarkeit wird aber zur Zeit nach wie vor national geregelt. Daher erfolgte keine Deklaration bei CE-Zeichen; ggfs. allgemeine bauaufsichtliche Zulassungen verwenden.	C€	
© If Specien	Brandverhalten falls ausdrücklich beim CE-Zeichen gefordert Nachweis für alle verbauten Materialien nach EN 13501-1	C€	

Wissenswertes **Prüfungen / Zulassungen / CE-Zeichen**

Übersicht über Prüfungen und Zulassungen

Ift Icon	Anforderungen nach EN 13830	CE	Info
O it basesher	Brandausbreitung falls ausdrücklich beim CE-Zeichen gefordert Nachweis über Gutachten		
O It Baseshalm	Temperaturwechselbeständigkeit falls ausdrücklich beim CE-Zeichen gefordert Nachweis durch den Hersteller/Glaslieferanten		
© Fl Scharfeirs	Potenzialausgleich wenn konkret beim CE-Zeichen gefordert (für Vorhangfassaden auf Metallbasis bei einer Montage an Gebäuden mit über 25m Höhe)		
On beenson	Erdbebensicherheit Wenn konkret beim CE-Zeichen gefordert Nachweis durch den Hersteller		
O Its Resentation	Gebäude- und thermische Bewegungen Der Ausschreiber muss die von der Vorhangfassade aufzunehmenden Gebäudebewegungen, einschließlich der Bewegungen in den Gebäudefugen, spezifiezieren.		
Ift Icon	Weitere Anforderungen	CE	Info
© It Reportation	Dynamische Schlagregenprüfung Nach ENV 13050		siehe Produktpass
on special F	Verwendbarkeitsnachweis für mechanische Verbindung Klemmverbindung zur Befestigung Stabalux Schraubrohr Stabalux Anschraubkanal		national durch allgemeine bauaufsichtliche Zulassun- gen (abZ) geregelt; abZ auf Anforderung
© Ill Resorbein	Verwendbarkeitsnachweis für mechanische Verbindung T-Verbindung Pfosten/Riegel Stabalux Schraubrohr		national durch allgemeine bauaufsichtliche Zulassun- gen (abZ) geregelt; abZ auf Anforderung
St. Sassan	Einbruchhemmende Fassaden Widerstandsklasse RC2 / RC3 nach DIN EN1627		Prüfberichte und Gutacht- liche Stellungnahmen auf Anfrage

Prüfungen / Zulassungen / CE-Zeichen

BauPV / DOP / ITT / FPC / CE

9.3 3

Bauproduktenverordnung (BauPV)

Zum 01. Juli 2013 ist die Bauproduktenverordnung (BauPV, Nr. 305/2011 der Europäischen Gemeinschaft) in Kraft getreten und ersetzt die bis dahin geltende Bauproduktenrichtlinie (BPR).

Die BauPV regelt das "Inverkehrbringen" von Bauprodukten und gilt in allen europäischen Mitgliedsstaaten. Somit ist eine Umsetzung in nationales Recht nicht erforderlich. Die BauPV zielt auf die Sicherheit von Bauwerken für Mensch, Tier und Umwelt ab. Um diese Ziele zu erreichen, werden wesentliche Leistungsmerkmale, Produktund Prüfstandards der Bauprodukte in harmonisierten Normen präzisiert. Dies führt EU-weit zu vergleichbaren Leistungseigenschaften.

Für Vorhangfassaden gilt die harmonisierte Norm EN 13830.

Nach der BPR wurde den Kunden im Wesentlichen die Übereinstimmung (Konformität) des Produktes mit der zugehörigen harmonisierten Europäischen Norm dargelegt. Die BauPV dagegen fordert das Ausstellen einer Leistungserklärung, die der Hersteller an den Kunden aushändigen muss und sichert ihm damit die Leistung hinsichtlich der wesentlichen Merkmale zu.

Neben der Leistungserklärung fordert die BauPV gegenüber der Bauproduktenrichtlinie unverändert:

- eine Erstprüfung (ITT) der Produkte
- eine werkseigene Produktionskontrolle (WPK) durch den Hersteller
- eine CE- Kennzeichnung

Leistungserklärung

Die Leistungserklärung (LE bzw. $\mathbf{DoP} = \underline{\mathbf{D}}$ eclaration $\underline{\mathbf{o}}$ f $\underline{\mathbf{P}}$ erformance) nach der BauPV ersetzt die bisherige Konformitätserklärung nach BPR. Sie ist das zentrale Dokument, mit dem der Hersteller der Vorhangfassade die Verantwortung für die Konformität mit den erklärten Leistungen übernimmt und darüber hinaus zusichert.

Auf Basis dieser Leistungserklärung muss der Hersteller eine CE-Kennzeichnung der Fassade vornehmen, damit das Bauprodukt für den Markt bereitgestellt werden darf. Mit der CE-Kennzeichnung wird erklärt, dass eine Leistungserklärung besteht. In beiden, der Leistungserklärung und der CE-Kennzeichnung finden sich die normativ beschriebenen Eigenschaften der Vorhangfassade wieder. Leistungserklärung und CE-Kennzeichnung müssen einander klar zuzuordnen sein.

Die Leistungserklärung kann nur der Hersteller der Fassade abgeben.

In der Leistungserklärung muss mindestens eine wesentliche Eigenschaft deklariert sein. Trifft eine wesentliche Eigenschaft nicht zu, ist aber durch einen Schwellenwert definiert, so ist in das entsprechende Feld ein Bindestrich "—" einzutragen. Die Angabe "npd" (no performance determined) ist in diesen Fällen nicht zulässig.

Es ist ratsam, die Leistungen entsprechend den objektbezogenen Anforderungen gemäß Leistungsverzeichnis zu übernehmen.

Eine Leistungserklärung kann nach dem Sinn der BauPV erst dann abgegeben werden, wenn das Produkt hergestellt wurde und nicht in der Angebotsphase. Die Leistungserklärung muss in der Sprache des Mitgliedsstaates, in den das Bauprodukt geliefert wird, ausgestellt werden.

Die Leistungserklärung wird dem Kunden übergeben.

Leistungserklärungen sind mindestens 10 Jahre aufzubewahren.

Die Anforderungen an Vorhangfassaden sind in der harmonisierten Norm EN 13830 geregelt. Alle Leistungen in Bezug auf die in dieser Norm behandelten Merkmale sind zu bestimmen, wenn der Hersteller beabsichtigt, sie zu erklären. Es sei denn, die Norm enthält Festlegungen zur Angabe der Leistung ohne Prüfungen (z.B. zur Verwendung von bestehenden Daten, zur Klassifizierung ohne weitere Prüfung und zur Verwendung von normalerweise anerkannten Leistungswerten).

Wissenswertes Prüfungen / Zulassungen / CE-Zeichen

BauPV / DOP / ITT / FPC / CE

9.3 3

Zum Zwecke der Bewertung dürfen Produkte eines Herstellers in Familien zusammengefasst werden, wenn die Ergebnisse für ein oder mehrere Merkmal(e) eines beliebigen Produktes innerhalb einer Familie als repräsentativ für das gleiche Merkmal bzw. für die gleichen Merkmale aller Produkte innerhalb der betreffenden Familie angesehen werden kann. Die wesentlichen Merkmale können demzufolge an repräsentativen Probekörpern bei einer sogenannten Erstprüfung (ITT = Initial Type Test) ermittelt werden, auf die zurückgegriffen werden kann.

Bezieht der Hersteller Bauprodukte von einem Systemgeber (oft auch als Systemvertreiber bezeichnet) und dieser rechtlich dazu befugt ist, darf der Systemgeber die Verantwortung für die Bestimmung des Produkttyps hinsichtlich eines oder mehrerer wesentlicher Merkmale des Endproduktes übernehmen, das anschließend von den Verarbeitern in deren Werken hergestellt und/oder zusammengebaut wird. Grundlage hierfür ist eine Vereinbarung zwischen beiden Parteien. Die Vereinbarung kann z.B. ein Vertrag, eine Lizenz oder eine beliebige andere Art schriftlicher Vereinbarung sein, der/die auch die Verantwortlichkeit und Haftung des Bauteilherstellers (des Systemvertreibers einerseits und anderseits des Unternehmens, das das Endprodukt zusammenbaut) eindeutig regeln sollte. In diesem Fall muss der Systemvertreiber ein "zusammengebautes Produkt" das aus einer von ihm oder von einer anderen Partei hergestellten Bauteilen besteht, einer Bestimmung des Produkttyps unterziehen und anschließend den Prüfbericht dem eigentlichen Hersteller des in Verkehr gebrachten Produktes zur Verfügung stellen.

Die Ergebnisse der Bestimmung des Produkttyps sind in Prüfberichten zu dokumentieren. Alle Prüfberichte sind mindestens 10 Jahre nach dem Datum der letzten Herstellung des Vorhangfassadenbausatzes, auf den sie sich beziehen, vom Hersteller aufzubewahren.

Erstprüfung

[Initial Type Test = ITT]

Eine Ersttypprüfung (ITT) ist die Ermittlung der Produkteigenschaften nach der europäischen Produktnorm für Vorhangfassaden EN 13830. Die Ersttypprüfung kann an repräsentativen Probekörpern durch Messung, Berechnung oder andere Verfahren, die in der Produktnorm beschrieben sind, erfolgen. In der Regel ist es dabei ausreichend,

ein repräsentatives Element einer Produktfamilie der Erstprüfung für eine oder mehrere Leistungseigenschaften zu unterziehen. Für die Durchführung von Erstprüfungen muss der Hersteller anerkannte Prüfstellen beauftragen – Details hierzu sind in der Produktnorm EN 13830 geregelt. Abweichungen vom geprüften Element liegen im Verantwortungsbereich der Hersteller und dürfen zu keiner Verschlechterung der Leistungseigenschaften führen.

Die Europäische Kommission räumt den Systemgebern die Möglichkeit ein, als Dienstleistung diese Ersttypprüfungen der eigenen Systeme durchzuführen und seinen Kunden zur Verwendung für die Leistungserklärung und CE-Kennzeichnung zur Verfügung zu stellen.

Für die einzelnen Stabalux Systeme wurden die relevanten Produkteigenschaften mittels Erstprüfungen ermittelt. Der Hersteller (z.B. Metallbauer) kann die Erstprüfungen des Systemgebers unter bestimmten Randbedingungen (z. B. Verwendung der gleichen Komponenten, Aufnahme der Verarbeitungsrichtlinien in die werkseigene Produktionskontrolle u.w.) verwenden.

Für die Weitergabe der Prüfzeugnisse an die Verarbeiter werden folgende Voraussetzungen genannt:

- Das Produkt wird aus denselben Komponenten mit identischen Eigenschaften hergestellt wie die bei der Ersttypprüfung vorgestellten Probekörper.
- Der Verarbeiter trägt die volle Verantwortung für die Konformität mit den Verarbeitungsrichtlinien des Systemgebers und für die korrekte Herstellung des in Verkehr gebrachten Bauproduktes.
- Die Verarbeitungshinweise des Systemgebers sind integraler Bestandteil der werkseigenen Produktionskontrolle bei dem Verarbeiter (Hersteller).
- Der Hersteller ist im Besitz der Prüfberichte, auf deren Grundlage er die CE-Kennzeichnung seiner Produkte durchführt und berechtigt ist diese zu nutzen.
- Sollte das geprüfte Produkt für das in den Verkehr gebrachte Produkt nicht repräsentativ sein, so hat der Hersteller eine notifizierte Stelle mit der Prüfung zu beauftragen.

Zur Verwendung der Prüfzeugnisse des Systemgebers durch den Verarbeiter ist eine Vereinbarung zwischen beiden erforderlich, in der der Verarbeiter anerkennt,

Prüfungen / Zulassungen / CE-Zeichen

BauPV / DOP / ITT / FPC / CE

9.3 3

die Elemente entsprechend der Verarbeitungshinweise unter Verwendung der vom Systemgeber festgelegten Artikel (z.B. Material, Geometrie) einzusetzen.

Werkseigene Produktionskontrolle

[$\underline{\mathbf{F}}$ actory $\underline{\mathbf{P}}$ roduction $\underline{\mathbf{C}}$ ontrol = \mathbf{FPC}]

Um sicherzustellen, dass die ermittelten und in den Prüfberichten angegebenen Leistungsmerkmale der Produkte eingehalten werden, ist der Hersteller/Verarbeiter verpflichtet, eine werkseigene Produktionskontrolle (FPC) in seinem Unternehmen aufzubauen.

In Betriebs- und Verfahrensanweisungen hat er dafür alle Daten, Anforderungen und Vorschriften an die Produkte systematisch festzulegen. Für die Produktionsstätte(n) ist darüber hinaus ein Verantwortlicher zu benennen, der fachlich in der Lage ist, die Konformität der hergestellten Produkte zu überprüfen und zu bestätigen.

Hierzu hat der Hersteller/Verarbeiter geeignete Prüfeinrichtungen und/oder Geräte vorzuhalten.

Bei der werkseigenen Produktionskontrolle (FPC) gemäß EN 13830 für Vorhangfassaden (ohne Anforderungen an den Brand- oder Rauchschutz) müssen folgende Schritte vom Hersteller/Verarbeiter durchgeführt werden:

Einrichtung eines dokumentierten Produktionskontrollsystems entsprechend dem Produkttyp und den Produktionsbedingungen

- Überprüfung, ob alle notwendigen technischen Unterlagen und Verarbeitungshinweise vorliegen.
- Festlegung und Nachweis von Rohstoffen und Bestandteilen.
- Kontrolle und Prüfungen während der Herstellung mit der vom Hersteller festgelegten Häufigkeit.
- Überprüfungen und Prüfungen von Fertigprodukten/-bauteilen mit der vom Hersteller festgelegten Häufigkeit.
- Beschreibung von Maßnahmen bei Nichtkonformität (Korrekturmaßnahmen).

Die Ergebnisse der werkseigenen Produktionskontrolle (FPC) sind aufzuzeichnen, zu bewerten und aufzubewahren und sollten folgendes enthalten:

- Kennzeichnung des Produktes (z.B. Bauvorhaben, genaue Bezeichnung der Vorhangfassade).
- Ggf. Dokumentation bzw. Hinweis auf technische Unterlagen und Verarbeitungsrichtlinien.
- Prüfverfahren (z.B. Angabe der Arbeitsschritte und Prüfkriterien, Dokumentation von Stichproben).
- Prüfergebnisse und gegebenenfalls Vergleich mit den Anforderungen.
- Falls erforderlich, Maßnahmen bei Nichtkonformität
- Datum der Produktfertigstellung und Datum der Produktprüfungen.
- Unterschrift von Prüfer und der für die werkseigenen Produktionskontrolle verantwortlichen Person.

Die Aufzeichnungen müssen für einen Zeitraum von 5 Jahren aufbewahrt werden.

Für Betriebe, die nach DIN EN ISO 9001 zertifiziert sind, gilt, dass diese Norm nur dann als FPC-System anerkannt werden kann, wenn sie den Anforderungen der Produktnorm EN 13830 angepasst ist.

CE-Kennzeichnung

Die Vergabe des CE-Kenzeichens setzt das Vorhandensein einer Leistungserklärung voraus. In der CE-Kennzeichnung können nur die Leistungen gelistet werden, die zuvor in der Leistungserklärung deklariert wurden. Wurden in der Leistungserklärung Merkmale mit "npd" oder "—" deklariert, sind diese bei der CE-Kennzeichnung nicht aufzuführen.

Gemäß der Produktnorm müssen die Bauteile der Vorhangfassade nicht einzeln gekennzeichnet und beschildert werden. Die CE-Kennzeichnungng ist dauerhaft, gut sichtbar und leserlich an der Fassade anzubringen. Alternativ kann die Kennzeichnung den Begleitpapieren beigefügt werden.

Das CE-Kennzeichen kann nur der Hersteller der Fassade vergeben.

Hinweis:

Vorgenannte Ausführungen gelten nur, wenn keine Brandschutzverglasung hergestellt wird. Werden Anforderungen an den Brandschutz gestellt, muss der Hersteller ein EG-Konformitätszertifikat vorlegen, das von einer externen Zertifizierungsstelle ausgestellt wird.

Wissenswertes **Prüfungen / Zulassungen / CE-Zeichen**

BauPV / DOP / ITT / FPC / CE

Vorlage CE-Kennzeichnung

CE		CE-Kennzeichnung, bestehend aus dem "CE"-Symbol	
Fassadenbau Must Musterstraße D 12345 Musters	1	Name und registrierte Anschrift des Herstellers oder Kennzeichen (LE Pkt.4)	
13		Die letzten beiden Ziffern des Jahres in dem die Kennzeichnung zuerst angebracht wurde	
Deutschland			
Stabalux (Syste	em)	Eindeutiger Kenncode des Produktes (LE Pkt.1)	
LE/DoP-Nr.: 001/CPR/	01.07.2013	Referenznummer der Leistungserklärung	
EN 13830		Nr. der angewendeten Europäischen Norm, wie im Amtsblatt der EU angegeben (LE Pkt.7)	
Montagesatz für Vorhangfassade Außenbereich	_	Verwendungszweck des Produktes, wie in der Europäischen Norm angegeben (LE Pkt.3)	
Brandverhalten	npd		
Feuerwiderstand	npd		
Brandausbreitung	npd		
Schlagregendichtheit	RE 1650 Pa		
Widerstand gegen Eigenlast	000kN		
Widerstand gegen Windlast	2,0 kN/m²	Stufe oder Klasse der angegebenen Leistung	
Stoßfestigkeit	E5/I5	(Leistungsmerkmale nicht höher deklarieren als im LV gefordert!) (LE Pkt.9)	
Temperaturwechselbeständigkeit	ESG		
Widerstand gegen Horizontallasten	000kN		
Luftdurchlässigkeit	AE		
Wärmedurchgangskoeffizient	0,0 W/(m²K)		
Luftschalldämmung	0,0dB		
Erstprüfungen durchgeführt und K erstellt durch: ift Rosenhei		Kennnummer des zertifizierten Prüflabors (LE Pkt.8)	

Wissenswertes **Prüfungen / Zulassungen / CE-Zeichen**

BauPV / DOP / ITT / FPC / CE

Vorlage Leistungserklärung

	Leistungserklärung						
LE/DoP-Nr.: 021/CPR/01.07.2013							
1.	Kenncode des Produkttyps:		Stabalux (System)				
2.	2. IdentNr.		von Hersteller				
3.	Verwendungszweck:		Montagesatz für Vorhangfassade für die Anwendung im Außenbereich				
4.	4. Hersteller:		Fassadenbau Mustermann Musterstraße 1 D 12345 Musterstadt				
5.	Bevollmächtigter:		./.				
6. Leistu	System oder Systeme zur Bewertung der ungsbeständigkeit:	3					
7.	Harmonisierte Norm:		EN 13830:2003				
8.	s. Notifizierte Stelle:		Ift Rosenheim NB-Nr. 0757 hat als notifiziertes Prüflabor im Konformitätssystem 3 die Erstprüfungen durchgeführt und die Prüf- und Klassifizierungsberichte ausgestellt.				
9.	Wesentliche Merkmale:						
Wesentliches Merkmal: (Abschnitt EN 13830)		Harmonisierte technische Spezifikation					
9.1	Brandverhalten (Abs. 4.9)	npd					
9.2	Feuerwiderstand (Abs. 4.8)	npd					
9.3	Brandausbreiteung (Abs. 4.10)	npd					
9.4	Schlagregendichtheit (Abs. 4.5)	RE 1650 Pa					
9.5	Widerstand gegen Eigenlast (Abs. 4.2)	npd	EN 13830:2003				
9.6	Widerstand gegen Windlast (Abs. 4.1)	2,0 KN/m²					
9.7	Stoßfestigkeit	E5/I5					
9.8	Temperaturwechselbeständigkeit	npd					
9.9	Widerstand gegen Horizontallasten	npd					
9.10	Luftdurchlässigkeit	AE					
9.11	Wärmedurchgang	$U_f = 0.0 \text{ W/} $ $m^2 \text{K}$					
9.12	Luftschalldämmung	0,0 dB					
10.	Die Leistung des Produkts gemäß den Nummern 1 und 2 entspricht der erklärten Leistung nach Nummer 9.						

Verantwortlich für die Erstellung der Leistungserklärung ist allein der Hersteller gemäß Nummer 4. Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Musterstadt, den 01.07.2013

ppa. Muster Mustermann, Geschäftsleitung

Prüfungen / Zulassungen / CE-Zeichen

DIN EN 13830 / Erläuterungen

9.3 4

Definition Vorhangfassade

In der EN 13830 ist der Begriff "Vorhangfassade" definiert als:

"[...] besteht in der Regel aus vertikalen und horizontalen, miteinander verbundenen, im Baukörper verankerten und mit Ausfachungen ausgestatteten Bauteilen, die eine leichte, raumabschließende ununterbrochene Hülle bilden, die selbstständig oder in Verbindung mit dem Baukörper alle normalen Funktionen einer Außenwand erfüllt, jedoch nicht zu den lastaufnehmenden Eigenschaften des Baukörpers beiträgt."

Die Norm gilt für Vorhangfassaden, die, bezogen auf die Gebäudefläche, von vertikalen Konstruktionen bis hin zu solchen reichen, die bis zu 15° von der Vertikalen abweichen. In der Vorhangfassade enthaltene Schrägverglasungselemente können eingeschlossen werden.

Vorhangfassaden (Pfosten-Riegel-Konstruktionen) stellen eine Reihe von Bauteilen und/oder vorgefertigten Einheiten dar, die erst auf der Baustelle zu einem fertigen Produkt zusammengesetzt werden.

Merkmale bzw. geregelte Eigenschaften EN 13830

Das Ziel der CE-Kennzeichnung ist die Einhaltung grundlegender Sicherheitsanforderungen an die Fassade sowie den freien Warenhandel innerhalb Europas. Die Produktnorm EN 13830 definiert und regelt die wesentlichen Merkmale dieser grundlegenden Sicherheitsanforderungen als mandatierte Eigenschaften:

- · Widerstand gegen Windlast.
- Eigenlast.
- · Stoßfestigkeit.
- Luftdurchlässigkeit.
- Schlagregendichtheit.
- Luftschalldämmung.
- · Wärmedurchgang.
- Feuerwiderstand.
- Brandverhalten.
- Brandausbreitung.
- Dauerhaftigkeit.
- Wasserdampfdurchlässigkeit.

- Potenzialausgleich.
- Erdbebensicherheit.
- Temperaturwechselbeständigkeit.
- Gebäude- und thermische Bewegungen.
- Widerstand gegen dynamische Horizontallasten.

Zum Nachweis der wesentlichen Eigenschaften sind sogenannte Ersttypprüfungen durchzuführen, die abhängig von der Eigenschaft entweder von einer notifizierten Stelle (z. B. ift Rosenheim) oder dem Hersteller (dem Verarbeiter) selbst durchgeführt werden dürfen. Die Anforderung weiterer Eigenschaften kann objektbezogen definiert werden und entsprechend nachzuweisen.

Das Verfahren zur Prüfungsdurchführung sowie die Art der Klassifizierung werden in der Produktnorm EN 13830 festgelegt – hier wird häufig auf europäische Normen verwiesen. Teilweise werden auch Prüfverfahren direkt in der Produktnorm beschrieben.

Die Eigenschaften und ihre Bedeutung

Die Anforderungen werden in der Produktnorm DIN EN 13830 geregelt – im Folgenden handelt es sich um Auszüge bzw. um eine zusammenfassende Darstellung.

Die Auszüge sind der zurzeit gültigen Norm DIN EN 13830-2003 -11 entnommen. Im Juni 2013 ist der Normentwurf prEN 13830 in deutscher Fassung veröffentlich worden. Neben redaktionellen Änderungen wurde das Dokument fachlich grundlegend überarbeitet, so dass nach Einführung der Norm nachfolgende Ausführungen auf Gültigkeit geprüft und eventuell angepasst werden müssen.

Widerstand gegen Windlast

"Vorhangfassaden müssen ausreichend stabil sein, um bei einer Prüfung nach DIN EN 12179 sowohl den positiven als auch den negativen, der Planung für die Gebrauchstauglichkeit zu Grunde liegenden Windlasten zu widerstehen. Sie müssen über die dafür vorgesehenen Befestigungselemente die der Planung zu Grunde liegenden Windlasten sicher auf das Gebäudetragwerk übertragen. Die der Planung zu Grunde liegenden Windlasten ergeben sich aus der Prüfung nach EN 12179.

DIN EN 13830 / Erläuterungen

 $\frac{9.3}{4}$

Unter den der Planung zu Grunde liegenden Windlasten darf bei einer Messung nach EN 13116 zwischen den Auflage- bzw. Verankerungspunkten des Gebäudetragwerks die maximale frontale Durchbiegung der einzelnen Teile des Vorhangfassadenrahmens L/200 bzw. 15 mm nicht überschreiten, je nachdem, welches der kleinere Wert ist."

Der Nennwert für das CE-Zeichen wird in der Einheit [kN/m²] angegeben.

Wir weisen darauf hin, dass unabhängig von der Erstprüfung jede Vorhangfassade objektbezogen statisch nachgewiesen werden muss.

An dieser Stelle schon ein Hinweis auf den Normentwurf, der eine grundsätzlich neue Regelung für die Gebrauchstauglichkeit vorsieht und damit die Dimensionierung von Pfosten-Riegel-Konstruktionen erheblich beeinflusst.

 $f \le L/200; & \text{wenn L} \le 3000 \text{ mm} \\ f \le 5 \text{ mm} + L/300; & \text{wenn 3000 mm} < L < 7500 \text{ mm} \\ f \le L/250; & \text{wenn L} \ge 7500 \text{ mm} \\$

Durch diese Änderung der Verformungsbegrenzungen ist zu beachten, dass sich eventuell andere Grenzen durch die Ausfachungen (z.B. Glas; Isolierglasverbund, etc.) und größere Ausnutzung der Profil in der Tragfähigkeit ergeben.

Eigenlast

"Vorhangfassaden müssen ihr Eigengewicht und alle in der Originalplanung erfassten zusätzlichen Anschlüsse tragen. Sie müssen das Gewicht über die dafür vorgesehen Befestigungselemente sicher auf das Gebäudetragwerk übertragen.

Die Eigenlast ist nach EN 1991-1-1 zu bestimmen.

Die maximale Durchbiegung jeglicher horizontaler Primärbalken durch Vertikallasten darf L/500 bzw. 3 mm nicht überschreiten, je nachdem, welches der kleinere Wert ist."

Der Nennwert für das CE-Zeichen wird in der Einheit $[kN/m^2]$ angegeben.

Wir weisen darauf hin, dass unabhängig von der Erstprüfung jede Vorhangfassade objektbezogen statisch nachgewiesen werden muss.

Im Normentwurf entfällt der Grenzwert 3 mm. Es ist jedoch zu gewährleisten, dass jegliche Berührung zwischen Rahmen und Ausfachungselement verhindert wird, um gegebenenfalls eine ausreichende Belüftung sicherzustellen. Ebenso muss das geforderte Einstandsmaß der Ausfachung eingehalten werden.

Stoßfestigkeit

"Falls ausdrücklich gefordert, sind Prüfungen nach EN 12600:2002, Abschnitt 5 durchzuführen. Die Ergebnisse sind nach prEN 14019 zu klassifizieren. Die Glasprodukte müssen EN 12600 entsprechen."

Für das CE-Zeichen wird die Klasse für die Stoßfestigkeit von innen und außen bestimmt. Die Klasse wird über die Fallhöhe in [mm] des Pendels definiert (z.B. Klasse I4 für innen, Klasse E4 für außen).

Bei der Prüfung werden an kritischen Punkten der Fassadenkonstruktion (Mitte Pfosten, Mitte Riegel, Kreuzpunkt Pfosten/Riegel, etc.) Pendelschläge aus bestimmter Höhe durchgeführt. Bleibende Verformungen an der Fassade sind zulässig – herabfallende Teile bzw. Loch- oder Bruchbildung dürfen allerdings nicht auftreten.

Luftdurchlässigkeit

"Die Luftdurchlässigkeit ist nach DIN EN 12153 zu prüfen. Die Ergebnisse sind nach EN 12152 darzustellen."

Für das CE-Zeichen wird die Klasse für die Luftdurchlässigkeit über den Prüfdruck in [Pa] bestimmt (z. B. Klasse A4).

Schlagregendichtheit

"Die Schlagregendichtheit ist nach DIN EN 12155 zu prüfen. Die Ergebnisse sind nach EN 12154 darzustellen."

Für das CE-Zeichen wird die Klasse für die Schlagregendichtheit über den Prüfdruck in [Pa] bestimmt (z. B. Klasse R7).

DIN EN 13830 / Erläuterungen

9.3 4

Luftschalldämmung R_w(C; C_{tr})

"Falls ausdrücklich gefordert, ist das Schalldämmmaß durch Prüfung nach EN ISO 140-3 zu bestimmen. Die Prüfergebnisse sind nach EN ISO 717-1 zu bestimmen."

Der Nennwert für das CE-Zeichen wird in der Einheit [dB] angegeben.

Der Nachweis ist objektbezogen zu führen.

Wärmedurchgang U_{cw}

"Das Verfahren zur Bewertung/Berechnung des Wärmedurchgangs von Vorhangfassaden und den geeigneten Prüfverfahren sind in prEN 13947 festgelegt."

Der Nennwert für das CE-Zeichen wird in der Einheit $[W/(m^2\cdot K)]$ angegeben.

Der U_{cw} – Wert ist zum einen abhängig vom Wärmedurchgangskoeffizient U_f des Rahmens (Pfosten-Riegel-konstruktion der Fassade), zum anderen von den Wärmedurchgangskoeffizienten der Einsatzelemente wie zum Beispiel dem Glas mit seinem U_g – Wert. Darüber hinaus spielen weitere Faktoren (z.B. der Randverbund des Glases, etc.) und die Geometrie (Achsmaße, Anzahl der Pfosten und Riegel innerhalb der Konstruktion der Fassade) eine Rolle. Der Wärmedurchgangskoeffizient U_{cw} ist vom Hersteller/Verarbeiter rechnerisch oder über Messungen nachzuweisen. Es können vom Systemgeber werkseigene Berechnung der U_f – Werte angefordert werden.

Der Nachweis ist objektbezogen zu führen.

Feuerwiderstand

"Falls ausdrücklich gefordert, ist ein Nachweis des Feuerwiderstandes nach prEN 13501-2 zu klassifizieren."

Für das CE-Zeichen wird die Klasse für den Feuerwiderstand über Funktion (E = Integrität; EI = Integrität und Dämmung), die Brandrichtung und die Feuerwiderstandsdauer in [min] bestimmt (z.B. Klasse EI 60, $i \leftrightarrow o$).

Zurzeit kann aber auf Grund einer noch nicht existenten harmonisierten Prüfnorm keine Deklaration im CE—Zeichen erfolgen ("npd" = no performance determined; keine Leistungsbestimmung erfolgt).

Es bleibt in diesem Fall bei dem national eingeführten System der "allgemeinen bauaufsichtlichen Zulassungen für Brandschutzverglasungen", die jedoch nicht im CE-Zeichen deklariert werden.

Brandausbreitung

"Falls ausdrücklich gefordert, sind in der Vorhangfassade entsprechende Vorrichtungen vorzusehen, die die Ausbreitung von Feuer und Rauch durch Öffnungen in der Vorhangfassadenkonstruktion an den Anschlüssen auf allen Ebenen mittels konstruktiver Bodenplatten verhindern."

Der Nachweis ist objektbezogen zu führen und z.B. über ein Gutachten zu erbringen.

Dauerhaftigkeit

"Die Dauerhaftigkeit der Leistungsmerkmale der Vorhangfassade wird nicht geprüft, sondern bezieht sich auf die erreichte Übereinstimmung der verwendeten Werkstoffe und Oberflächen mit dem neuesten Stand der Technik, oder soweit diese vorliegen, mit den europäischen Spezifikationen für den Werkstoff oder die Oberfläche."

Die einzelnen Bauteile an der Fassade sind in Bezug auf den natürlichen Alterungsprozess entsprechend vom Nutzer zu pflegen und zu warten. Anweisungen zur fachgerechten Umsetzung (z.B. die Fassade sollte zur Sicherstellung der vorgesehenen Lebensdauer regelmäßig gereinigt werden, etc.) sind dem Nutzer durch den Hersteller/Verarbeiter zu übergeben. Hilfreich erscheint hierfür auch ein Wartungsvertrag zwischen Hersteller und Nutzer der Fassade.

Zu beachten sind hierbei Produkthinweise oder entsprechende Merkblätter wie z.B. die Merkblätter des VFF.

Wasserdampfdurchlässigkeit

"Es sind Dampfsperren nach der entsprechenden Europäischen Norm zur Kontrolle der im Gebäude vorliegenden festgelegten hydrothermischen Bedingungen vorzusehen."

Der Nachweis ist objektbezogen zu führen. Für dieses Merkmal gibt es keine spezielle Leistungsdarstellung, es ist daher keine Begleitinformation auf dem CE-Zeichen erforderlich.

Prüfungen / Zulassungen / CE-Zeichen

DIN EN 13830 / Erläuterungen

9.3 4

Potenzialausgleich

"Die Schlagregendichtheit ist nach DIN EN 12155 zu prüfen. Die Ergebnisse sind nach EN 12154 darzustellen."

Der Nachweis ist objektbezogen zu führen und wird in der SI-Einheit $[\Omega]$ deklariert.

Erdbebensicherheit

"Wenn konkret erforderlich, ist die Erdbebensicherheit entsprechend den Technischen Spezifikationen oder anderer am Anwendungsort geltender Festlegungen zu bestimmen."

Der Nachweis ist objektbezogen zu führen.

Temperaturwechselbeständigkeit

"Falls Beständigkeit des Glases gegenüber Temperaturwechsel gefordert wird, ist ein geeignetes Glas, z.B. gehärtetes oder vorgespanntes Glas, nach entsprechenden Europäischen Normen zu verwenden."

Der Nachweis ist objektbezogen zu führen und bezieht sich ausschließlich auf das einzusetzende Glas.

Gebäude- und thermische Bewegungen

"Die Konstruktion der Vorhangfassade muss in der Lage sein, thermische Bewegungen und Bewegungen des Baukörpers so aufzunehmen, dass es zu keinen Zerstörungen von Elementen der Fassade oder Beeinträchtigungen der Leistungsanforderungen kommt. Der Ausschreiber muss die von der Vorhangfassade aufzunehmenden Gebäudebewegungen, einschließlich der Gebäudefugen, spezifizieren."

Der Nachweis ist objektbezogen zu führen.

Widerstand gegen dynamische Horizontallasten

"Die Vorhangfassade muss dynamische Horizontallasten in Höhe des Brüstungsriegels nach EN 1991-1-1 aufnehmen können."

Der Nachweis ist objektbezogen zu führen und kann durch eine objektbezogenen durch einen rechnerisch erbrachten statischen Nachweis verifiziert werden. Dabei ist zu beachten, dass die jeweilige Höhe des Brüstungsriegels entsprechend den national gesetzlichen Festlegungen variiert. Der Wert wird in [kN] bei Höhe (H in [m]) des Brüstungsriegels angegeben.

Prüfungen / Zulassungen / CE-Zeichen

DIN EN 13830 / Erläuterungen

9.3 4

Klassifizierungsmatrix

Die nachfolgend abgebildete Tabelle enthält die Klassifizierung der Eigenschaften für Vorhangfassaden nach EN 13830, Kapitel 6:

Hinweis

Ist eine Leistung für den bestimmungsgemäßen Anwendungszweck des Produktes nicht relevant, ist die Bestimmung der Leistung in dieser Hinsicht nicht erforderlich. Hier trägt der Hersteller/Verarbeiter in den entsprechen-

den Begleitpapieren lediglich ein "npd" ein – "keine Leistungsbestimmung erfolgt" – alternativ können die Merkmale auch ausgelassen werden. Diese Option gilt nicht für Schwellenwerte.

Die Klassifizierung der Merkmale der Vorhangfassade nach den oben genannten Vorgaben muss für jeden einzelnen Bau erfolgen, unabhängig davon, ob es sich um ein projektbezogenes oder ein Standardsystem handelt.

Nr.	Ift Icon	Bezeichnung	Einheiten		Kla	Klasse oder Nennwert				
1	© its Essenthalin	Widerstand gegen Windlast	kN/m²	npd	Nennwe	ert				
2	© It Rosenheim	Eigenlast	kN/m²	npd	Nennwe	ert				
3	Oilt Rosenbein	Stoßfestigkeit Innen mit Fallhöhe in mm	(mm)	npd	10 (k.A)	I1 200	12 300	13 450	14 700	15 950
4	© its Resonation	Stoßfestigkeit Außen mit Fallhöhe in mm	(mm)	npd	E0 (k.A)	E1 200	E2 300	E3 450	E4 700	E5 950
5	© its Essenhalm	Luftdurchlässigkeit mit Prüfdruck Pa	(Pa)	npd	A1 150	A2 300	A3	A4	AE > 600	
6	O It Rosesholm	Schlagregendichtheit mit Prüfdruck Pa	(Pa)	npd	R4 150	R5	R6 450	R7	RE > 600	
7	© (It Reportable)	Luftschalldämmung Rw (C; Ctr)	dB	npd	Nennwe	ert				
8	++	Wärmedurchgang U _{cw}	W / m²k	npd	Nennwe	ert				
9	© fi Poorhein	Feuerwiderstand Integrität (E)	(min)	npd	E 15	E 30	E 60	E 90		
10		Integrität und Dämmung (EI)	(min)	npd	EI 15	EI 30	EI 60	El 90		
11	Oils Rosenbein	Potenzialausgleich	Ω	npd	Nennwe	ert				
12	F upwered in	Widerstand gegen seitliche Nutzlasten	kN bei m Höhe des Brüstungs- riegels	npd	Nennwe	ert				

Oberflächenbeschichtung

9.3 5

Beschichtung von Aluminium

Neben den anodischen Eloxalverfahren sind bei entsprechender Vorbehandlung die üblichen Beschichtungsverfahren wie z.B. lufttrocknende Mehrschichtfarbsysteme (Nassbeschichtung) oder thermohärtende Beschichtungen (Einbrennlackierung/Pulverbeschichtung) anwendbar. Durch unterschiedliche Massenverteilung sind bei den Deckleisten DL 5073 und DL 6073 Schattenbildungen in Längsrichtung möglich. Daraus resultierende Maßnahmen sind in Abstimmung mit dem Beschichter zu ergreifen.

Einführung

9.4 1

Allgemeines

Die Fassade ist eine Schnittstelle zwischen Innen- und Außenraum. Sie wird häufig mit der menschlichen Haut verglichen, die die Fähigkeit besitzt, ständig auf sich ändernde Außeneinflüsse zu reagieren. Ähnlich ist die Funktion der Fassade: den Nutzern von Gebäuden eine behagliche Innenraumsituation zu gewährleisten und den Energiehaushalt des Gebäudes positiv zu beeinflussen. Dabei spielen die klimatischen Rahmenbedingungen eine entscheidende Rolle. So ist die Auswahl und die Ausführung einer Fassade stark von der geografischen Lage abhängig.

Eine zu errichtende Fassade muss nach Gebäudeenergiegesetz (GEG) sowie der DIN 4108 Wärmeschutz im Hochbau den Mindestwärmeschutz nach den anerkannten Regeln der Technik gewährleisten. Denn der Wärmeschutz hat Auswirkungen auf die Gebäude und deren Nutzer:

- auf die Gesundheit der Bewohner, z.B. durch ein hygienisches Raumklima
- auf den Schutz der Baukonstruktion vor klimabedingten Feuchte-Einwirkungen und deren Folgeschäden
- sowie auf den Energieverbrauch bei Heizung und Kühlung
- und somit auch auf die Kosten und den Klimaschutz

Heute, in Zeiten des Klimawandels, werden besonders hohe Anforderungen an die Wärmedämmeigenschaften einer Fassade gestellt. Grundsätzlich gilt: Je besser der bauliche Wärmeschutz, desto geringer der Energieverbrauch eines Gebäudes und die daraus resultierende Umweltbelastung durch Schadstoffe und CO_2 .

Zur Optimierung des Wärmeschutzes - mit geringen Wärmeverlusten im Winter und guten raumklimatischen Bedingungen im Sommer - bedarf es der Gesamtoptimierung der Fassade mit all ihren Bauteilen. Dazu gehört z.B. durch geeignete Materialien die Wärmeleitung zu reduzieren, wärmegedämmte Rahmenkonstruktionen einzusetzen oder Isolierglas zu verwenden. Der Gesamtenergiedurchlass von Verglasungen, abhängig von Größe und Orientierung der Fenster, die Wärmespeicherfähigkeit der einzelnen Bauteile oder auch Sonnenschutzmaßnahmen sind in der Planungsphase wichtige Kriterien.

Haupteinfluss auf die Bestimmung der U_f -Werte (Wärmedurchgangskoeffizient der Rahmenprofile) nehmen die Glasdicke, der Glaseinstand und der Einsatz von Dämmblöcken. Mit dem Systen Stabalux AL können U_f -Werte von bis zu 0,57 W/(m²K) erzielt werden. Selbst bei Berücksichtigung des Schraubeneinflusses ergeben sich exzellente Werde mit $U_f \le 0.9$ W/(m² K).

Normen $\frac{9.4}{2}$

Verzeichnis zu beachtender Normen und Regelwerke

GEG: Gebäudeenergiegesetz: Gesetz zur Einsparung von Energie und zur Nutzung erneuerbarer

Energien zur Wärme- und Kälteerzeugung in Gebäuden. (8. Aug. 2020)

DIN 4108-2: 2013-02, Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 2: Mindestanforderun-

gen an den Wärmeschutz.

DIN 4108-3: 2001-07, Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 3: Klimabedingter

Feuchteschutz, Anforderungen, Berechnungsverfahren und Hinweise für Planung und Aus-

führung.

DIN 4108: Beiblatt 2:2006-03, Wärmeschutz und Energie-Einsparung in Gebäuden - Wärmebrücken -

Planungs- und Ausführungsbeispiele.

DIN 4108-4: 2013-02, Wärmeschutz und Energie-Einsparung in Gebäuden - Wärme- und feuchteschutz-

technische Bemessungswerte.

DIN EN ISO 10077-1: 2010-05, Wärmetechnisches Verhalten von Fenstern, Türen und Abschlüssen, Berechnung

von Wärmedurchgangskoeffizienten - Teil 1: Allgemeines.

DIN EN ISO 10077-2: 2012-06, Wärmetechnisches Verhalten von Fenstern, Türen und Abschlüssen, Berechnung

von Wärmedurchgangskoeffizienten - Teil 2: Numerisches Verfahren für Rahmen.

DIN EN ISO 12631: 2013-01, Wärmetechnisches Verhalten von Vorhangfassaden, Berechnung des Wärme-

durchgangskoeffizienten Ucw.

DIN EN 673: 2011-04, Glas im Bauwesen - Berechnung des Wärmedurchgangskoeffizienten Ug.

DIN EN ISO 10211: 2008-04, Wärmebrücken im Hochbau - Wärmeströme und Oberflächentemperaturen -

Teil 1: Detaillierte Berechnungen (ISO 10211_2007); Deutsche Fassung EN ISO 10211:2007.

DIN EN ISO 6946: 2008-04, Wärmedurchlasswiderstand und Wärmedurchgangskoeffizient, Berechnungsver-

fahren.

DIN 18516-1: 2010-06, Außenwandbekleidungen, hinterlüftet, Teil 1 Anforderungen und Prüfgrundsätze.

$\frac{9.4}{3}$

Definitionen:

U - der Wärmedurchgangskoeffizient

(auch Wärmedämmwert, U-Wert, früher k-Wert) ist ein Maß für den Wärmestromdurchgang durch eine ein- oder mehrlagige Materialschicht, wenn auf beiden Seiten verschiedene Temperaturen anliegen. Er gibt die Leistung (also die Energiemenge pro Zeiteinheit) an, die durch eine Fläche von 1 m² fließt, wenn sich die beidseitig anliegenden Lufttemperaturen stationär um 1 K unterscheiden. Seine SI-Maßeinheit ist daher:

W/(m²⋅K) (Watt pro Quadratmeter und Kelvin).

Der Wärmedurchgangskoeffizient ist ein spezifischer Kennwert eines Bauteils. Er wird im Wesentlichen durch die Wärmeleitfähigkeit und Dicke der verwendeten Materialien bestimmt, aber auch durch die Wärmestrahlung und Konvektion an den Oberflächen.

Anmerkung: Für eine Messung des Wärmedurchgangskoeffizienten sind stationäre Temperaturen wichtig, damit die Wärmespeicherfähigkeit der Materialien bei Temperaturänderungen das Messergebnis nicht verfälscht.

Je höher der Wärmedurchgangskoeffizient, desto schlechter ist die Wärmedämmeigenschaft des Materials.

λ

Wärmeleitfähigkeit eines Materials.

U_r - Wert

Der U_f -Wert ist der Wärmedurchgangskoeffizient des Rahmens. Das f steht für das englische Wort frame (Rahmen). Für die Berechnung des U_f -Wertes wird Fensterglas durch ein Paneel mit: λ =0,035 W/(m·K) ersetzt.

 U_g - Wert

Der U_g-Wert ist der Wärmedurchgangskoeffizient der Verglasung.

U_D - Wert

Der U_p-Wert ist der Wärmedurchgangskoeffizient des Paneels.

U.,. - Wert

Der $\rm U_w$ -Wert ist der Wärmedurchgangswert des Fensters, der sich aus dem $\rm U_f$ -Wert des Rahmens und dem $\rm U_g$ -Wert der Verglasung zusammensetzt.

U_{cw} - Wert

Der U_{cw}-Wert ist der Wärmedurchgangskoeffizient einer Vorhangfassade.

 $\psi_{f,g}$ - Wert

Längenbezogener Wärmedurchgangskoeffizient des Randverbundes (Kombination von Rahmen und Verglasung).

Rs

Der Wärmeübergangswiderstand Rs (früher: $1/\alpha$) bezeichnet den Widerstand (engl.: Resistor), den die Grenzschicht von dem umgebenden Medium (im Allgemeinen Luft) zum Bauteil dem Wärmestrom beim Übergang entgegensetzt.

9.4 3

Definitionen:

Rsi Wärmeübergangswiderstand innen.

Rse Wärmeübergangswiderstand außen.

Tmin Minimale Oberflächentemperatur im

Inneren zur Ermittlung der Tauwasserfreiheit von Fensteranschlüssen. Tmin eines Bauteils muss größer sein

als der Taupunkt des Bauteils.

f_{Rsi} dient der Überprüfung der Schimmelpilzfreiheit von Fensteranschlüssen.

Der Temperaturfaktor f_{Rsi} ist die Differenz zwischen der Temperatur auf der Innenoberfläche θ si eines Bauteils und der Außenlufttemperatur θ e, bezogen auf die Temperaturdifferenz zwischen Innenluft θ i und Außenluft

θe.

Um das Risiko der Schimmelbildung durch konstruktive Maßnahmen zu verringern, sind verschiedene Anfor-

derungen einzuhalten.

So zum Beispiel muss für alle konstruktiven, formbedingten und stoffbedingten Wärmebrücken, die von DIN 4108 Beiblatt 2 abweichen, der Temperaturfaktor $f_{\rm Rsi}$ an der ungünstigsten Stelle die Mindestanforderung:

f_{Rsi} ≥ 0,70 erfüllen.

 $\frac{9.4}{3}$

Berechnung nach DIN EN ISO 12631

- Vereinfachtes Beurteilungsverfahren.
- Beurteilung der einzelnen Komponenten.

Symbol	Größe	Einheit
Α	Fläche	m^2
T	Thermodynamische Temperatur	K
U	Wärmedurchgangskoeffizient	$W/(m^2 \cdot K)$
ℓ	Länge	m
d	Tiefe	m
Φ	Wärmestrom	W
Ψ	längenbezogener Wärmedurchgangskoeffizient	W/(m⋅K)
Δ	Differenz	
Σ	Summe	
3	Emissionsgrad	
λ	Wärmeleitfähigkeit	W/(m⋅K)
Indizes		
g	Verglasung (glazing)	
p	Paneel (panel)	
f	Rahmen (frame)	
m	Pfosten (mullion)	
t	Riegel (transom)	
w	Fenster (window)	
cw	Vorhangfassade (curtain wall)	
Legende		
U _e , U _D	Wärmedurchgangskoeffizient Füllungen	W/(m²⋅K)
U _f , U _t , U _m	Wärmedurchgangskoeffizient Rahmen, Pfosten,	
	Riegel	W/(m²⋅K)
A_g, A_p	Flächenanteile Füllungen	m²
A_f, A_t, A_m	Flächenanteile Rahmen, Pfosten, Riegel	
$\begin{matrix} \psi_{f,g}, \psi_{m,g}, \\ \psi_{t,g}, \psi_{p} \end{matrix}$	längenbezogener Wärmedurchgangskoeffizient aufgrund der kombinierten thermischen Wirkung zwischen Verglasung, Paneel und Rahmen - Pfos-	
	ten/Riegel	W/(m⋅K)
$\Psi_{m,f}, \Psi_{t,f}$	längenbezogener Wärmedurchgangskoeffizient aufgrund der kombinierten thermischen Wirkung	W // 10
	zwischen Rahmen - Pfosten/Riegel	W/(m⋅K)

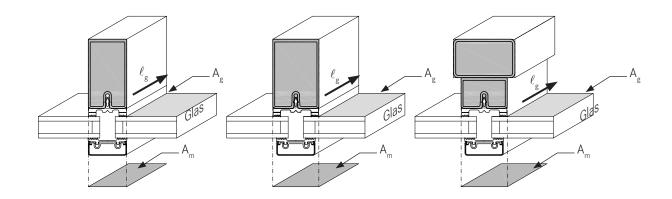
 $\frac{9.4}{3}$

Beurteilung der einzelnen Komponente

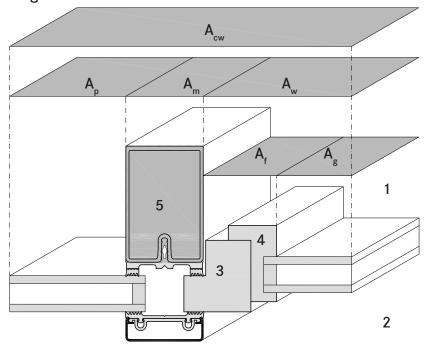
Im Verfahren mit Beurteilung der einzelnen Komponenten wird ein repräsentatives Element in Flächen mit unterschiedlichen thermischen Eigenschaften, z.B. Verglasungen, opake Paneele und Rahmen, unterteilt. (...) Dieses Verfahren ist auf Vorhangfassaden, wie z.B. Element-Fassaden, Pfosten-Riegel-Fassaden und Trockenverglasung anwendbar. Das Verfahren mit der Beurteilung der einzelnen Komponenten eignet sich nicht für SG-Verglasung mit Silikonverfugung, hinterlüftete Fassaden und SG-Verglasung.

Formel

$$U_{cw} = -\frac{\Sigma A_g U_g + \Sigma A_p U_p + \Sigma A_m U_m + \Sigma A_t U_t + \Sigma \ell_{fg} \psi_{fg} + \Sigma \ell_{mg} \psi_{mg} + \Sigma \ell_{tg} \psi_{tg} + \Sigma \ell_p \psi_p + \Sigma \ell_{mf} \psi_{mf} + \Sigma \ell_{tf} \psi_{tf}}{A_{cw}}$$


Berechnung der Fassadenfläche

$$\mathbf{A}_{cw} = \mathbf{A}_{g} + \mathbf{A}_{p} + \mathbf{A}_{f} + \mathbf{A}_{m} + \mathbf{A}_{t}$$


9.4 3

Verglaste Flächen

Die verglaste Fläche A_g bzw. die Fläche eines opaken Paneels A_p eines Bauteils ist die kleinere der beidseitig sichtbaren Flächen. Die Überlappung der Verglasten Flächen durch Dichtung wird nicht berücksichtigt.

Flächenanteil des Rahmens, Pfostens und Riegel

Legende

- 1 raumseitig
- 2 außenseitig
- 3 feststehender Rahmen
- 4 beweglicher Rahmen
- 5 Pfosten/Riegel

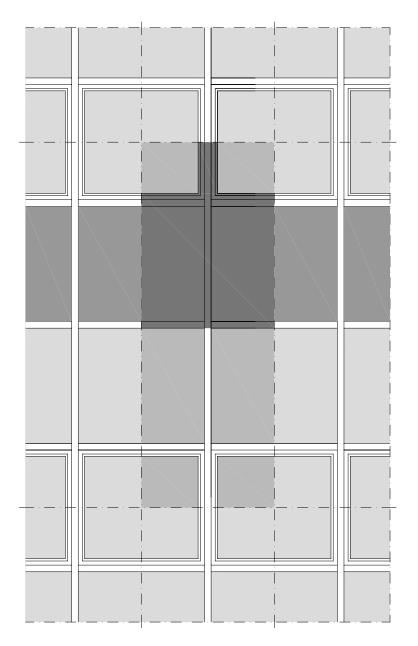
A Fläche der Vorhangfassade

A Fläche des Paneels

A Fläche des Pfostens

A. Fläche des Fensters

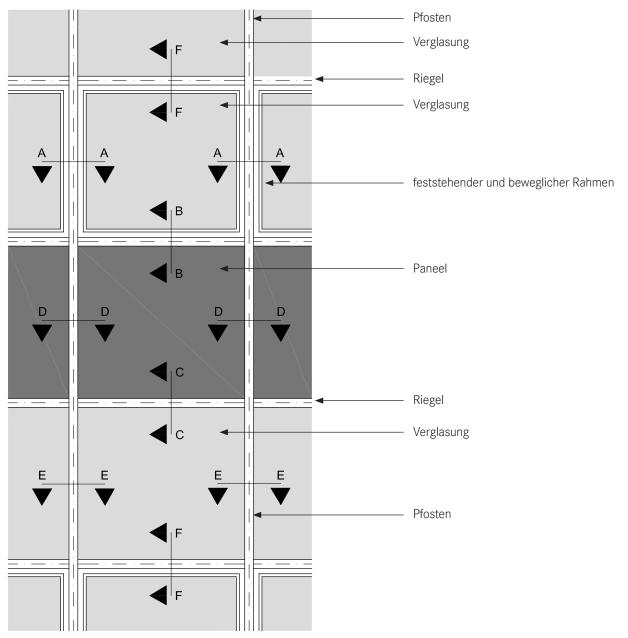
A Fläche der Verglasung


Ä Fläche des Pfostens

Schnittebenen im geometrischen Modell (U)

Damit der Wärmedurchgangskoeffizient U für jeden Bereich berechnet werden kann, wird ein repräsentatives Fassadenelement gewählt. Dieser Auschnitt soll alle in der Fassade enthaltenen Elemente mit unterschiedlichen thermischen Eigenschaften erfassen. Dazu gehören Verglasungen, Paneele, Brüstungen und deren Anschlüsse wie Pfosten, Riegel und Silikonfugen.

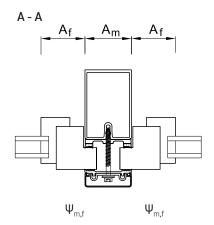
Die Schnittebenen sollen adiabatische Grenzen haben. Diese können entweder:


- Symmetrieebenen oder
- Ebenen, in denen der Wärmestrom durch diese Ebene rechtwinklig zur Ebene der Vorhangfassade verlaufen, d.h. es sind keine Randeinflüsse vorhanden (z.B. mit einem Abstand von 190 mm zum Rand eines Fensters mit Doppelverglasung).

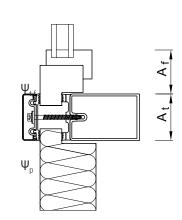
 $\frac{9.4}{3}$

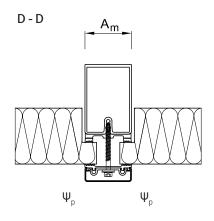
Grenzen eines representativen Bezugselementes einer Fassade (U_{cw})

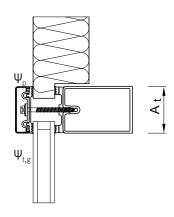
Für die $\rm U_{cw}$ - Berechnung wird das repräsentative Bezugselement in Flächen mit unterschiedlichen wärmetechnischen Eigenschaften unterteilt.

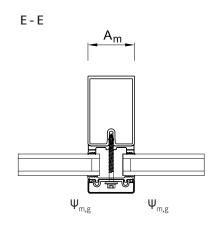


$\frac{9.4}{3}$

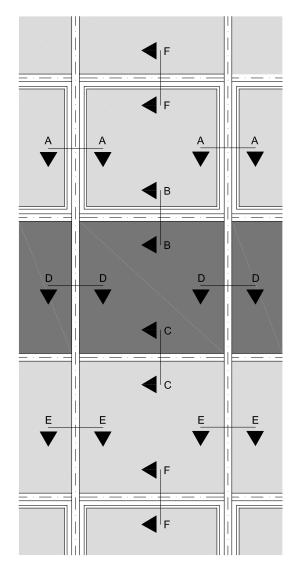

Schnitte


F-F




B - B

C - C



9.4 3

Berechnungsbeispiel

Fassadenausschnitt

Berechnet wird der Fassadenausschnitt innerhalb der Achsen mit den Abmessungen:
B x H = 1200 mm x 3300 mm

Festverglasung Met

TI-S_9.4_001.dwg

Berechnungsbeispiel

Berechnung der Flächen und Längen

Pfosten, Riegel und Rahmen:

Breite Pfosten (m) 50 mm 50 mm Breite Riegel (t) Breite Fensterrahmen (f) 80 mm

 $A_{m} = 2 \cdot 3,30 \cdot 0,025$ = 0,1650 m² $A_{+} = 3 \cdot (1,2 - 2 \cdot 0,025) \cdot 0,025 = 0,1725 \text{ m}^2$ $A_f = 2 \cdot 0.08 \cdot (1.20 + 1.10 - 4 \cdot 0.025 - 2 \cdot 0.08)$

 $= 0,1650 \text{ m}^2$

Flächenelement Glas - beweglicher Teil:

 $b = 1,20 - 2 \cdot (0,025 + 0,08)$ = 0.99 m $h = 1,10 - 2 \cdot (0,025 + 0,08)$ = 0.89 m $A_{\sigma 1} = 0.89 \cdot 0.99$ = 0,8811 m² $I_{\sigma 1} = 2 \cdot (0.99 + 0.89)$ = 3,76 m

Flächenelement Paneel:

 $b = 1,20 - 2 \cdot 0,025$ = 1,15 m $h = 1,10 - 2 \cdot 0,025$ = 1,05 m

 $A_{p} = 1,15 \cdot 1,05$ = 1,2075 m²

 $I_{n} = 2 \cdot 1.15 + 2 \cdot 1,05$ = 4,40 m

Flächenelement Glas - fester Teil:

 $b = 1,20 - 2 \cdot 0,025$ = 1,15 m $h = 1,10 - 2 \cdot 0,025$ = 1,05 m $A_{n} = 1,15 \cdot 1,05$ = 1,2075 m²

 $I_n = 2 \cdot 1.15 + 2 \cdot 1,05$ = 4,40 m

Bestimmung der U_i - Werte - Beispiel

U - Werte	Bestimmung nach
U _g (Verglasung)	DIN EN 673 ¹ / 674 ² / 675 ²
U _p (Paneel)	DIN EN ISO 69461
U _m (Pfosten)	DIN EN 12412-2 ² / DIN EN ISO 10077-2 ¹
U _t (Riegel)	DIN EN 12412-2 ² / DIN EN ISO 10077-2 ¹
U _f (Rahmen)	DIN EN 12412-2 ² / DIN EN ISO 10077-2 ¹
$\Psi_{f,g}$	
Ψ_{p}	DIN EN ISO 10077-21 /
$\psi_{\text{m,g}} / \psi_{\text{t,g}}$	DIN EN ISO 12631 - 01.2013 Anhang B
$\psi_{\text{m,f}}/\psi_{\text{t,f}}$	
¹ Berechnung, ² Mess	ung

Rechenwert U _i [W/(m²·K)]	
1,20	
0,46	
2,20	
1,90	
2,40	
0,11	
0,18	
0,17	
0,07 - Typ D2	

 $\frac{9.4}{3}$

Berechnungsbeispiel

Ergebnisse

	Α	U _i	I	Ψ	A · U	ψ٠Ι
	[m²]	[W/(m²·K)]	[m]	[W/(m·K)]	[W/K]	[W/K]
Pfosten Riegel Rahmen	$A_{m} = 0,1650$ $A_{t} = 0,1725$ $A_{f} = 0,3264$	$U_{m} = 2,20$ $U_{t} = 1,90$ $U_{f} = 2,40$			0,363 0,328 0,783	
Pfosten-Rahmen Riegel-Rahmen			$I_{m,f} = 2,20$ $I_{t,f} = 2,20$	$ \psi_{m,f} = 0.07 $ $ \psi_{t,f} = 0.07 $		0,154 0,154
Verglasung: - beweglich - fest	$A_{g,1} = 0,8811$ $A_{g,2} = 1,2075$	$U_{g,1} = 1,20$ $U_{g,2} = 1,20$	$I_{f,g} = 3,76$ $I_{m,g} = 4,40$	$ \psi_{g,1} = 0,11 $ $ \psi_{g,2} = 0,17 $	1,057 1,449	0,414 0,784
Paneel	A _p = 1,2705	$U_{p} = 0,46$	$I_p = 4,40$	$\Psi_{p} = 0,18$	0,556	0,792
Summe	A _{cw} = 3,96				4,536	2,262

$$U_{cw} = \frac{\Sigma A \cdot U + \Sigma \psi \cdot I}{A_{cw}} = \frac{4,536 + 2,626}{3,96} = 1,72 \text{ W/(m2·K)}$$

9.4 3

Ermittlung der ψ - Werte nach DIN EN ISO 12631 - Anhang B - Verglasung

	Art der V	erglasung		
Art von Pfosten/Riegel	Doppel- oder Dreifachverglasung (6 mm Glas), unbeschichtetes Glas mit Luft- oder Gaszwischenraum	Doppel- oder Dreifachverglasung (6 mm Glas), Glas mit niedrigem Emissionsgrad Einfachbeschichtung bei Zweischeibenverglasung Zweifachbeschichtung bei Dreischeibenverglasung mit Luft- oder Gaszwischenraum		
	Ψ [W/(m·K)]	Ψ [W/(m·K)]		
Tabelle B.1	Abstandhalter aus Aluminium und	Stahl in Pfosten- oder Riegelprofilen $_{i},\Psi_{\mathrm{t,g}}$		
Holz-Aluminium	0,08	0,08		
Metallrahmen mit wärmetechnischer Trennung	d _i ≤ 100 mm: 0,13 d _i ≤ 200 mm: 0,15	$d_i \le 100 \text{ mm: 0,17}$ $d_i \le 200 \text{ mm: 0,19}$		
Tabelle B.2	Wärmetechnisch verbesserter Abstandhalter in Pfosten- oder Riege profilen $\psi_{m,g}$, $\psi_{t,g}$			
Holz-Aluminium	0,06	0,08		
Metallrahmen mit wärmetechnischer Trennung	$d_i \le 100 \text{ mm: } 0.09$ $d_i \le 200 \text{ mm: } 0.10$	d _i ≤ 100 mm: 0,11 d _i ≤ 200 mm: 0,12		
Tabelle B.3 Tabelle basiert auf DIN EN 10077-1		und Stahl in Fensterrahmen $\psi_{f,g}$ nente in Fassaden)		
Holz-Aluminium	0,06	0,08		
Metallrahmen mit wärmetechnischer Trennung	0,08	0,11		
Metallrahmen ohne wärmetechnischer Trennung	0,02	0,05		
Tabelle B.4 Tabelle basiert auf DIN EN 10077-1		ostandhalter in Fensterrahmen $\psi_{f,g}$ nente in Fassaden)		
Holz-Aluminium	0,05	0,06		
Metallrahmen mit wärmetechnischer Trennung	0,06	0,08		
Metallrahmen ohne wärmetechnischer Trennung	0,01	0,04		

d, raumseitige tiefe des Pfostens/Riegels

9.4 3

Datenblatt "Warme Kante" (Wärmetechnisch verbesserte Abstandhalter) ψ-Werte Fenster*

Produktname	1	nit therm- rennung	Kuns	ststoff	н	olz	Holz/Metall		
	V ¹ U _g = 1,1	V ² U _g = 0,7	V ¹ U _g = 1,1	V ² U _g = 0,7	V ¹ U _g = 1,1	V ² U _g = 0,7	V ¹ U _g = 1,1	V ² U _g = 0,7	
Chromatech Plus (Edelstahl)	0,067	0,063	0,051	0,048	0,052	0,052	0,058	0,057	
Chromatech (Edelstahl)	0,069	0,065	0,051	0,048	0,053	0,053	0,059	0,059	
GTS (Edelstahl)	0,069	0,061	0,049	0,046	0,051	0,051	0,056	0,056	
Chromatech Ultra (Edelstahl/Polycarbonat)	0,051	0,045	0,041	0,038	0,041	0,040	0,045	0,043	
WEB premium (Edelstahl)	0,068	0,063	0,051	0,048	0,053	0,052	0,058	0,058	
WEB classic (Edelstahl)	0,071	0,067	0,052	0,049	0,054	0,055	0,060	0,061	
TPS (Polyisobutylen)	0,047	0,042	0,039	0,037	0,038	0,037	0,042	0,040	
Thermix TX.N (Edelstahl/Kunststoff)	0,051	0,045	0,041	0,038	0,041	0,039	0,044	0,042	
TGI-Spacer (Edelstahl/Kunststoff)	0,056	0,051	0,044	0,041	0,044	0,043	0,049	0,047	
Swisspacer V (Edelstahl/Kunststoff)	0,039	0,034	0,034	0,032	0,032	0,031	0,035	0,033	
Swisspacer (Edelstahl/Kunststoff)	0,060	0,056	0,045	0,042	0,047	0,046	0,052	0,051	
Super Spacer TriSeal (Mylarfolie/Silikonschaum)	0,041	0,036	0,035	0,033	0,034	0,032	0,037	0,035	
Nirotec 015 (Edelstahl)	0,066	0,061	0,050	0,047	0,051	0,051	0,057	0,056	
Nirotec 017 (Edelstahl)	0,068	0,063	0,051	0,048	0,053	0,053	0,058	0,058	

V¹ - Zweischeiben-Isolierglas

 U_g 1,1 W/(m²K) U_g 0,7 W/(m²K)

V² - Dreischeiben-Isolierglas

^{*} Ermittlung der Werte durch Hochschule Rosenheim und ift Rosenheim

9.4 3

Ermittlung der ψ - Werte nach DIN EN ISO 12631 - Anhang B - Paneele

Tabelle B.5 Werte des längenbezogenen Wärmedurchgangskoeffizienten für Abstandhalter für Paneele ψ_n

		- Р
Art der Füllung Innenliegende bzw. außenliegende Verkleidung	Wärmeleitfähigkeit des Abstandhalters λ [W/(m·K)]	längenbezogener Wärmedurch- gangskoeffizient* Ψ [W/(m·K)]
Paneeltyp 1 mit Verkleidung:		
Aluminium/Aluminium Aluminium/Glas Stahl/Glas	-	0,13
Paneeltyp 2 mit Verkleidung:		
Aluminium/Aluminium	0,2 0,4	0,20 0,29
Aluminium/Glas	0,2 0,4	0,18 0,20
Stahl/Glas	0,2 0,4	0,14 0,18

^{*}Dieser Wert darf verwendet werden, wenn keine Angaben aus Messungen oder aus detaillierten Berechnungen vorliegen.

Legende

- 1 Aluminium 2,5 mm/Stahl 2,0 mm
- 2 Dämmstoff λ = 0,025 bis 0,04 W/(m·K)
- 3 luftgefüllter Zwischenraum 0 bis 20 mm
- 4 Aluminium 2,5 mm/Glas 6 mm
- 5 Abstandhalter λ = 0,2 bis 0,4 W/(m·K)
- 6 Aluminium

Legende

- 1 Aluminium 2,5 mm/Stahl 2,0 mm
- 2 Dämmstoff λ = 0,025 bis 0,04 W/(m·K)
- 3 Aluminium 2,5 mm/Glas 6 mm
- 4 Abstandhalter λ = 0,2 bis 0,4 W/(m·K)
- 5 Aluminium

9.4 3

Ermittlung der ψ - Werte nach DIN EN ISO12631 - Anhang B - Einsatzelemente

Tabelle B.6 Werte des längenbezogenen Wärmedurchgangskoeffizienten für Verbindungsbereich von Pfosten/Riegel und Rahmen Alu/Stahl $\psi_{m/t,f}$

Typen von Verbindungsbe- reichen	Abbildung	Beschreibung	längenbezogener Wärmedurchgangs- koeffizient* ψ _{m,f} oder ψ _{t,f} [W/(m·K)]
А		Einbau des Rahmens in den Pfosten mit einem zusätzlichen Aluminiumprofil mit Wärme- technischer Trennzone	0,11
В		Einbau des Rahmens in den Pfosten mit einem zusätzlichen Profil mit niedriger Wärmeleitfähigkeit (z.B. Polyamid 6.6 mit einem Glasfasergehalt von 25 %)	0,05
C1		Einbau des Rahmens in den Pfosten mit der Verlängerung der wärmetechnischen Tren- nung des Rahmens	0,07
C2		Einbau des Rahmens in den Pfosten mit der Verlängerung der wärmetechnischen Tren- nung des Rahmens (z.B. Polyamid 6.6 mit einem Glasfasergehalt von 25 %)	0,07

Werte für ψ , die nicht tabellarisch erfasst sind, können durch numerische Berechnung nach EN ISO 10077-2 ermittelt werden.

9.4 3

Ermittlung der ψ - Werte nach DIN EN ISO 12631 01.2013 - Anhang B - Einsatzelemente

Tabelle B.6 Werte des längenbezogenen Wärmedurchgangskoeffizienten für Verbindungsbereich von Pfosten/Riegel und Rahmen Alu/Stahl $\psi_{m/t.f}$

Typen von Verbindungsbe- reichen	Abbildung	Beschreibung	längenbezogener Wärmedurchgangs- koeffizient* Ψ _{m,f} oder ψ _{t,f} [W/(m·K)]
D		Einbau des Rahmens in den Pfosten mit der Verlängerung des außenseitigen Aluminium- profils. Füllungswerkstoff für die Befestigung mit niedriger Wärmeleitfähigkeit λ = 0,3 W/(m·K)	0,07

^{*} Dieser Wert darf verwendet werden, wenn keine Angaben aus Messungen oder aus detaillierten Berechnungen vorliegen. Diese Werte gelten nur, wenn sowohl der Pfosten/Riegel als auch der Rahmen wärmetechnische Zonen aufweisen und eine wärmetechnische Trennzone nicht durch einen Teil des anderen Rahmens ohne wärmetechnische Trennzone unterbrochen wird.

Tabelle B.7 Werte des längenbezogenen Wärmedurchgangskoeffizienten für Verbindungsbereich von Pfosten/Riegel und Rahmen Holz und Aluminium $\psi_{m/t,f}$

Typen von Verbindungsbe- reichen	Abbildung	Beschreibung	längenbezogener Wärmedurchgangs-koeffizient* $\psi_{m,f} \text{ oder } \psi_{t,f}$ $[W/(m \cdot K)]$
A		U _m > 2,0 W/(m ² ·K)	0,02
В		U _m ≤ 2,0 W/(m²-K)	0,04

9.4 3

Wärmdurchgangskoffzient von Glas ($\rm U_{\rm g}$) nach DIN EN 10077-1 - Anhang C

Tabelle C.2 Wärmedurchgangskoeffizienten von Zweischeiben- und Dreischeiben-Isolierverglasungen mit verschiedenen Gasfüllungen für vertikal angeordnete Verglasung \mathbf{U}_{g}

	Verglasung	5	Wärmedurchgangskoeffizient für verschiede Arten des Gaszwischenraumes* U _g [W/(m²·K)]			
Тур	Glas	Üblicher Emissions- grad	Maße [mm]	Luft	Argon	Krypton
		0 11	4-6-4	3,3	3,0	2,8
	Unbeschichtetes		4-8-4	3,1	2,9	2,7
	Glas	0,89	4-12-4	2,8	2,7	2,6
	(Normalglas)		4-16-4	2,7	2,6	2,6
	,		4-20-4	2,7	2,6	2,6
			4-6-4	2,7	2,3	1,9
	Eine Scheibe		4-8-4	2,4	2,1	1,7
	beschichtetes	≤ 0,20	4-12-4	2,0	1,8	1,6
	Glas		4-16-4	1,8	1,6	1,6
			4-20-4	1,8	1,7	1,6
		≤ 0,15	4-6-4	2,6	2,3	1,8
Zweischeiben-	Eine Scheibe beschichtetes Glas		4-8-4	2,3	2,0	1,6
Isolier-			4-12-4	1,9	1,6	1,5
verglasung			4-16-4	1,7	1,5	1,5
			4-20-4	1,7	1,5	1,5
	Eine Scheibe beschichtetes Glas	≤ 0,10	4-6-4	2,6	2,2	1,7
			4-8-4	2,2	1,9	1,4
			4-12-4	1,8	1,5	1,3
			4-16-4	1,6	1,4	1,3
			4-20-4	1,6	1,4	1,4
		≤ 0,05	4-6-4	2,5	2,1	1,5
	Eine Scheibe		4-8-4	2,1	1,7	1,3
	beschichtetes Glas		4-12-4	1,7	1,3	1,1
			4-16-4	1,4	1,2	1,2
			4-20-4	1,5	1,2	1,2
	Unbeschichtetes		4-6-4-6-4	2,3	2,1	1,8
	Glas	0,89	4-8-4-8-4	2,1	1,9	1,7
	(Normalglas)	,	4-12-4-12-4	1,9	1,8	1,6
			4-6-4-6-4	1,8	1,5	1,1
	2 Scheiben	≤ 0,20	4-8-4-8-4	1,5	1,3	1,0
	beschichtet	,	4-12-4-12-4	1,2	1,0	0,8
Dreischeiben-	2.0.1.11		4-6-4-6-4	1,7	1,4	1,1
Isolier-	2 Scheiben	≤ 0,15	4-8-4-8-4	1,5	1,2	0,9
verglasung	beschichtet		4-12-4-12-4	1,2	1,0	0,7
0 11 0	0.0-1. "		4-6-4-6-4	1,7	1,3	1,0
	2 Scheiben	≤ 0,10	4-8-4-8-4	1,4	1,1	0,8
	beschichtet	,,,-	4-12-4-12-4	1,1	0,9	0,6
	0.0.1."		4-6-4-6-4	1,6	1,2	0,9
	2 Scheiben	≤ 0,05	4-8-4-8-4	1,3	1,0	0,7
	beschichtet	,	4-12-4-12-4	1,0	0,8	0,5

^{*} Gaskonzentration 90%

Zusammenfassung

Für eine \mathbf{U}_{cw} Berechnung werden folgende Angaben benötigt:

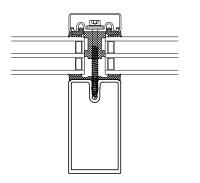
Bestimmung nach	Quelle		
DIN EN 673 ¹ / 674 ² / 675 ²	Angaben des Herstellers		
DIN EN ISO 69461	Angaben des Herstellers		
DIN EN 12412-2 ² / DIN EN ISO 10077-2 ¹	Stabalux Unterlagen / oder individuelle Berechnung*		
DIN EN 12412-2 ² / DIN EN ISO 10077-2 ¹	Stabalux Unterlagen / oder individuelle Berechnung*		
DIN EN 12412-2 ² / DIN EN ISO 10077-2 ¹	Angaben des Herstellers		
DIN EN ISO 10077-21 /	Wenn Abstandhalter der Verglasung bekannt ist- Berechnung nach DIN EN 10077-2, ansonsten DIN EN ISO 12631 - 01.2013 Anhang B oder ift - Tabelle "Warme Kante"		
DIN EN ISO 12631 - 01.2013 Anhang B	Wenn Aufbau bekannt - Berechnung nach DIN EN 10077-2, ansonsten DIN EN ISO 12631 - 01.2013 Anhang B		
len Massen und Füllungen wie Glas/	Angaben des Planers		
	DIN EN 673¹ / 674² / 675² DIN EN ISO 6946¹ DIN EN 12412-2² / DIN EN ISO 10077-2¹ DIN EN 12412-2² / DIN EN ISO 10077-2¹ DIN EN 12412-2² / DIN EN ISO 10077-2¹ DIN EN 12412-2² / DIN EN ISO 10077-2¹		

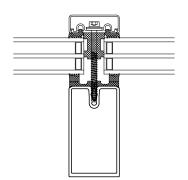
¹ Berechnung, ² Messung

^{*} Stabalux Kundenservice

Wissenswertes Wärmeschutz

U_f - Werte


9.4 4


Ermittlung der $\rm U_f$ - Werte nach DIN EN 10077-2

50120 Glaseinstand 15 mm

Stabalux AL

Werte ohne Schraubeneinfluß*

_	5 mm Innendichtung				12 mm Innendichtung			
System	U _f (W/m²K) mit Isolator		U _f (W/m²K) ohne Isolator		U _f (W/m²K) mit Isolator		U _f (W/m²K) ohne Isolator	
Außendichtung	GD 1932		GD 5024	GD 1932	GD 1932		GD 5024	GD 1932
AL-50120- 24 -15	(Z0606)	1,153	2,015	1,589	(Z0606)	1,090	1,970	1,628
AL-50120- 26 -15	(Z0606)	1,120	1,989	1,565	(Z0606)	1,065	1,944	1,604
AL-50120- 28 -15	(Z0606)	1,087	1,963	1,541	(Z0606)	1,039	1,918	1,580
AL-50120- 30 -15	(Z0606)	1,054	1,937	1,517	(Z0606)	1,014	1,892	1,557
AL-50120- 32 -15	(Z0606)	1,020	1,911	1,493	(Z0606)	0,989	1,866	1,533
AL-50120- 34 -15	(Z0606)	0,987	1,884	1,469	(Z0606)	0,963	1,840	1,509
AL-50120- 36 -15	(Z0606)	0,954	1,858	1,445	(Z0606)	0,938	1,814	1,485
AL-50120- 38 -15	(Z0605)	0,806	1,832	1,421	(Z0605)	0,768	1,788	1,461
AL-50120- 40 -15	(Z0605)	0,789	1,806	1,397	(Z0605)	0,755	1,762	1,438
AL-50120- 44 -15	(Z0605)	0,756	1,754	1,349	(Z0605)	0,728	1,709	1,390
AL-50120- 48 -15	(Z0605)	0,722	1,702	1,301	(Z0605)	0,701	1,657	1,342
AL-50120- 52 -15	(Z0605)	0,689	1,649	1,253	(Z0605)	0,675	1,605	1,295
AL-50120- 56 -15	(Z0605)	0,655	1,597	1,205	(Z0605)	0,648	1,553	1,247

^{*} Schraubeneinfluß pro Stück 0,00499 W/K, bei System 50 mm und Schraubenabstand 250 mm = + 0,3 W/(m²·K) Schraubeneinfluß nach Ebök (12.2008)

Feuchteschutz in der Glasfassade

<u>9.5</u>

Feuchteschutz

An die Konstruktion einer modernen Pfosten-Riegel-Fassade werden höchste Anforderungen gestellt, die nur durch kompetente Planung sowie sorgfältige Ausführung realisierbar sind. Die bauphysikalische Aufgabe einer intakten Fassade besteht darin, ein gesundes Raumklima zu schaffen

Wärmedämmeigenschaften sowie der Feuchteschutz gehören zu den wichtigsten Merkmalen einer intakten Außenhülle eines Gebäudes. Bei der Konstruktion einer Fassade gilt folgender prinzipieller Aufbau: außen wasserabweisend und innen dicht. So kann die im Bauteil entstandene Feuchte nach außen diffundieren.

Bei Stabalux Fassadensystemen werden die Einbauelemente wie Gläser, Paneele oder Öffnungselemente weich zwischen Dichtungsprofile gepackt und mittels Klemmleisten an die Pfosten-Riegel-Konstruktion befestigt. Im Einspannbereich zwischen den Einsatzelementen entsteht der sogenannte Falzraum. Dieser Falzraum muss von der Raumseite her dampfdicht, von der Wetterseite her dicht gegen eindringendes Wasser sein. Die raumseitige Dampfdichtheit ist zwingend erforderlich. In den Falzraum einströmende warme Raumluft kann bei Abkühlung zu einer Kondensatbildung führen.

Kondensatbildung im Falzraum kann grundsätzlich in unseren Breiten nicht ausgeschlossen werden. Eindringende Feuchtigkeit und Kondensat durch Montageungenauigkeiten und Veränderungen bei Temperaturschwankungen werden durch die Stabalux Dichtungsgeometrie sicher aus dem Falzraum abgeführt, ohne in die Konstruktion zu gelangen.

Der Falzraum muss am höchsten und tiefsten Punkt geöffnet sein. Die Öffnung des Falzraumes sollte im Durchmesser mindestens 8 mm und als Schlitz 4 x 20 mm betragen. Isolierglashersteller, Normen und Richtlinien schreiben einen hinreichend belüfteten Falzraum und Dampfdruckausgleichsöffnungen vor. Die Forderung gilt auch für Verglasungen mit Dichtstoffen, wie z.B. Silikon.

Luftdichtheit ist im Zusammenhang mit dem Wärmeschutz ebenfalls eine wichtige Größe. Je dichter die Außenwand, desto geringer sind die Wärmeverluste. Raumluftaustausch und Abtransport von warmer Luft sollte ausschließlich durch gezielte Lüftung über Fensteröffnungen oder Belüftungsanlagen erfolgen.

Das Stabalux Verglasungssystem hat seine hervorragenden Dichtigkeitseigenschaften in extremen Prüfungen nachgewiesen. Auch exponierteste Anwendungen wie z.B. Hochhausverglasungen sind mit Stabalux Fassadensystemen realisierbar.

Leistungsdaten

	Stabalux AL		Fassade 5mm hohe Dichtung	Fassade bis 20° Neigung; überlappende Innendichtung	Dach bis 2° Neigung
	Systembreiten		50 mm	50 mm	50 mm
© It Roserbein	Luftdurchlässigkeit EN 12152		AE	AE	AE
© It Rosortein	Schlagregendichtheit EN 12154/ENV 13050	statisch dynamisch	RE 1650 Pa 250 Pa/750 Pa	RE 1650 Pa 250 Pa/750 Pa	RE 1350 Pa*

^{*} über die Norm hinausgehend wurde die Prüfung mit einer Wassermenge von 3,4 ℓ /(m² min) durchgeführt.

Feuchteschutz in der Glasfassade

9.5 1

Begriffe

Wasserdampf/Tauwasser

Als Wasserdampf bezeichnet man den durch die Verdampfung von Wasser entstandenen gasförmigen Aggregatzustand. Ein Kubikmeter (m³) Luft kann nur eine begrenzte Menge Wasserdampf aufnehmen. Bei hohen Temperaturen mehr als bei niedrigen. Durch Abkühlung ist die Luft also nicht mehr in der Lage die gleiche Menge Wasser zu speichern. Die überschüssige Wassermenge kondensiert, geht also vom gasförmigen Zustand in den flüssigen über. Die Temperatur, bei der dieser Effekt eintritt wird als Taupunkttemperatur bzw. als Taupunkt bezeichnet.

Wenn die Innenraumtemperatur von 20°C mit einer relativen Luftfeuchte von 50% auf 9,3°C abgekühlt wird, so steigt die relative Luftfeuchtigkeit auf 100% an. Findet eine weitere Abkühlung der Luft oder der Berührungsflächen (Wärmebrücken) statt, so kommt es zum Tauwasserausfall. Die Luft kann das Wasser in Form von Wasserdampf nicht mehr aufnehmen.

Relative Luftfeuchtigkeit f

Die Maximalmenge des Wasserdampfes wird in der Praxis meistens nicht vorgefunden. Es wird lediglich ein gewisser Prozentsatz davon erreicht. Man spricht dann von relativer Luftfeuchtigkeit, die ebenfalls temperaturabhängig ist. Sie steigt bei unveränderter Feuchtigkeitsmenge an, wenn die Temperatur sinkt und sie reduziert sich bei Erwärmung der Luft.

Beispiel:

Bei einer Temperatur von 0° C sind in einem Wasserdampf-Luftgemisch von 1 m³ bei 100 % relativer Feuchtigkeit 4,9 g Wasser enthalten. Bei Erwärmung auf z. B. 20 °C tritt ohne weitere Feuchtigkeitsaufnahme eine Verringerung der relativen Luftfeuchtigkeit ein. Bei dieser Temperatur wäre die Luft in der Lage bei 100 % relativer Feuchtigkeit maximal 17,3 g – also 12,4 g mehr – Wasser aufzunehmen. Da bei der Erwärmung keine Feuchtigkeit zugeführt wurde, entsprechen die aus der kalten Luft enthaltenen 4,9 g nun einer relativen Luftfeuchtigkeit von 28 %.

Wasserdampfdruck

Neben der relativen Luftfeuchte spielen beim Diffusions vorgang auch Druckverhältnisse eine entscheidende Rolle. Der Wasserdampf erzeugt einen Druck, der mit der Menge des in der Luft gespeicherten Wasserdampfes steigt. Wird der Wasserdampfsättigungsdruck überschritten, dann ist es für die Wassermoleküle günstiger zu kondensieren, um damit den Druck zu senken.

Wasserdampfdiffusion

Als Wasserdampfdiffusion bezeichnet man die Eigenbewegung des Wasserdampfes durch Baustoffe hindurch. Verantwortlich für diesen Mechanismus sind unterschiedliche Wasserdampfdrücke auf beiden Seiten eines Bauteils. Der in der Luft gespeicherter Wasserdampf wandert von der Seite des höheren in Richtung des niedrigeren Dampfdrucks. Dabei ist der Wasserdampfdruck von der Temperatur und der relativen Luftfeuchte abhängig.

Wichtig: Der Stofftransport von Wasserdampf kann z.B. durch eine Dampfsperre (z.B. Metallfolien) vollständig unterbunden werden, der Wärmetransport dagegen nicht!

Wasserdampf-Diffusionswiderstandszahl μ

Quotient aus Wasserdampf-Diffusionsleitkoeffizient in Luft und Wasserdampfdiffusionsleitkoeffizient in einem Stoff. Sie gibt somit an, um welchen Faktor der Wasserdampf-Diffusionswiderstand des betrachteten Materials größer als der einer gleichdicken, ruhenden Luftschicht gleicher Temperatur ist. Die Wasserdampf-Diffusionswiderstandszahl ist eine Stoffeigenschaft.*

Wasserdampfdiffusionsäquivalente Luftschichtdicke s₄

Dicke einer ruhenden Luftschicht, die den gleichen Wasserdampf-Diffusionswiderstand besitzt wie die betrachtete Bauteilschicht bzw. das aus Schichten zusammengesetzte Bauteil. Sie bestimmt den Widerstand gegen Wasserdampfdiffusion.

Feuchteschutz in der Glasfassade

9.5 1

Die wasserdampfdiffusionsäquivalente Luftschichtdicke ist eine Schicht- bzw. Bauteileigenschaft. Sie ist für eine Bauteilschicht nach folgender Gleichung definiert:

$$s_d = \mu \cdot d^*$$

Der Wasserdampf kann nicht durch alle Baustoffe gleich diffundieren. Das heißt, der Druckabfall verläuft nicht gleichmäßig durch den Wandquerschnitt. Innerhalb diffusionsdichter Materialien ist der Druckabfall groß, in diffusionsoffenen Materialien klein. Genau dies beschreibt die dimensionslose Wasserdampf-Diffusionswiderstandszahl μ : Der Wasserdampf-Diffusionswiderstand eines Materials ist μ -Mal größer als der ruhenden Luftschicht. Das heißt, eine Luftschicht, die den gleichen Diffusionswiderstand haben soll wie das Material, müsste μ -Mal so dick sein, wie die Schicht des Materials.

Die Wasserdampf-Diffusionswiderstandszahl μ ist eine Materialeigenschaft und von der Größe (Dicke) des Materials unabhängig. Ein Beispiel: Der Diffusionswiderstand einer 0,1 m starken Schicht aus Zellulose-Flocken mit μ =2 entspricht dem einer Luftschicht mit einer Dicke von 2×10 cm = 0,2 m. Diese, mit Hilfe von μ berechnete "diffusionsäquivalente Luftschichtdicke", ist der S_d -Wert. In anderen Worten: Der S_d -Wert eines Bauteils beschreibt, wie dick eine ruhende Luftschicht sein müsste (in Metern), damit sie den gleichen Diffusionswiderstand wie das Bauteil hat. Der S_d -Wert ist somit eine Bauteil-spezifische Eigenschaft und hängt von der Art des Baustoffes und seiner Dicke ab.

Temperaturfaktor fpei

Dient der Überprüfung der Schimmelpilzfreiheit von Fensteranschlüssen. Der Temperaturfaktor f_{Rsi} ist die Differenz zwischen der Temperatur auf der Innenoberfläche θ si eines Bauteils und der Außenlufttemperatur θ e, bezogen auf die Temperaturdifferenz zwischen Innenluft θ i und Außenluft θ e.

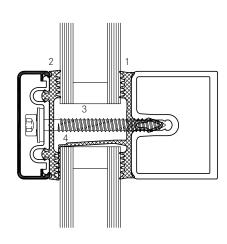
Um das Risiko der Schimmelbildung durch konstruktive Maßnahmen zu verringern, sind verschiedene Anforderungen einzuhalten. So zum Beispiel muss für alle konstruktiven, formbedingten und stoffbedingten Wärmebrücken, die von DIN 4108 Beiblatt 2 abweichen, der Temperaturfaktor f_{Rsi} an der ungünstigsten Stelle die Mindestanforderung von $f_{Rsi} \ge 0,70$ erfüllen.

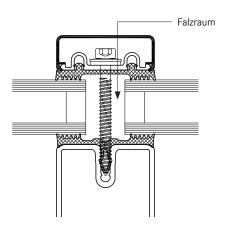
Wasserdampfkonvektion

Übertragung von Wasserdampf in einem Gasgemisch durch Bewegung des gesamten Gasgemisches, z.B. feuchte Luft, aufgrund eines Gesamtdruckgefälles. Gesamtdruckgefälle können z. B. infolge von Gebäude-Umströmungen an durchströmbaren Fugen oder Undichtheiten zwischen Innenräumen und Umgebung oder an belüfteten Luftschichten anliegen (erzwungene Konvektion) bzw. infolge von Temperatur- und damit Luftdichteunterschieden in belüfteten und nicht belüfteten Luftschichten auftreten (freie Konvektion)*.

Regelwerke

- DIN 4108 Wärmeschutz und Energie-Einsparung in Gebäuden.
- DIN 4108-3 Klimabedingter Feuchteschutz, Anforderungen, Berechnungsverfahren und Hinweise für Planung und Ausführung.
- DIN 4108-4 Wärme- und feuchteschutztechnische Bemessungswerte.
- DIN 4108-7 Luftdichtheit von Gebäuden, Anforderungen, Planungs- und Ausführungsempfehlungen sowie -beispiele.
- DIN 18361 Verglasungsarbeiten (VOB Teil C).
- DIN 18360 Metallbauarbeiten (VOB Teil C).
- DIN 18545 Abdichten von Verglasungen mit Dichtstoffen.
- Gebäudeenergiegesetz (GEG).
- DIN EN ISO 10211 Wärmebrücken im Hochbau.
- Passivhaus-Standard.
- DIN EN ISO Wärme- und feuchtetechnisches Verhalten von Baustoffen und Bauprodukten.
- DIN EN 12086 Wärmedämmstoffe für das Bauwesen
 Bestimmung der Wasserdampfdurchlässigkeit.


Feuchteschutz in der Glasfassade


9.5 1

Allgemeine Anforderung an Glaskonstruktionen

Eine klimatrennende Glaskonstruktion muß den diffundierenden Wasserdampf von innen nach außen weiterleiten. Dabei soll es möglichst zu keiner Kondensation kommen. Die Wand muss von innen nach außen diffusionsoffener werden. Hierzu sind folgende Einzelmaßnahmen erforderlich:

- 1. Eine innere Dichtungsebene mit möglichst hohem Dampfdiffusionwiderstand.
- 2. Eine äußere Dichtungsebene mit möglichst geringem Dampfdiffusionwiderstand.
- 3. Eine konstruktive Ausbildung der Falzräume zur konvektiven Abfuhr von Feuchte.
- 4. Eine ebenfalls konstruktive Ausbildung der Falzräume zur gezielten Kondensatabfuhr.
- 5. Diffusionswegsteuerung auch im Anschlußbereich zum angrenzenden Baukörper.

Wichtige Hinweise:

Die Erfahrung zeigt, dass eine absolute Wasser- und Dampfdichtheit bei Pfosten-Riegel-Konstruktionen nicht zu erreichen ist. Mögliche feuchtetechnische Schadensquellen können durch Montageungenauigkeiten in der Dichtungsverlegung und an Bauanschlüssen entstehen. Diese können zu einer direkten Einwirkung von Feuchtigkeit und an raumseitigen Oberflächen von Wärmebrücken zur Kondensatbildung führen. Ebenso können Schäden durch direkte Einwirkung von Feuchtigkeit und erhöhten Dampfdruck im Falzraum entstehen, der eine negative Auswirkung auf den Randverbund der Einsatzelemente hat. Dieser kann zum Wasserdampfeintritt in den Scheibenzwischenraum führen.

Beispiel: Durch Undichtigkeit an Profilflächen können während einer Tauperiode von 60 Tagen 20 L Wasser an einem Element von 1,35 m (b) x 3,5 m (h) ausfallen.

Um dauerhafte Schäden zu vermeiden, ist es daher besonders wichtig auf eine exakte Ausführung des Falzraumes zu achten. So kann Feuchtigkeit resultierend aus Niederschlag und Tauwasser schnell und ungehindert nach außen abgeführt werden. Es ist dabei zu beachten, dass eine wirksame Belüftung des Falzraumes durch Dämmblöcke nicht behindert werden darf! Der Dämmblock ist so zu wählen, dass mindestens 10 mm zur Unterkante des Falzraumes für die Belüftung und Kondensatabfluss freibleiben.

Zur Vermeidung von Wärmebrücken an Profilen, die zur Kondensat- und vor allem in Holzsystem zur Schimmelbildung führen können, ist auf die Wahl des Randverbundes der Verglasung zu achten. Ein guter U_Γ-Wert* des Profils garantiert nicht alleine die Tauwasserfreiheit. Der ψ-Wert* kann ebenso entscheidend sein. Dieser hängt vor allem von der Art des Randverbundes ab. Am ungünstigsten ist ein Randverbund aus Aluminium. Beim Einsatz eines Aluminiumrandverbundes ist daher die Tauwasserfreiheit zu prüfen. Vor allem wenn die Fassade an Räume mit hoher Luftfeuchtigkeit, wie z.B. Baderäume, grenzt.

Feuchteschutz in der Glasfassade

<u>9.5</u>

Innere Dichtungsebene

Als dampfdicht sind nach DIN EN 12086 beziehungsweise nach DIN EN ISO 12572 Baustoffe zu bezeichnen, die eine wasserdampfdiffusionsäquivalente Luftschichtdicke $\mathbf{S}_{\rm d}$ von \geq 1500 m aufweisen. Diese Werte werden von gebräuchlichen Verglasungsdichtungen nicht erreicht. Jedoch kann bei Schichtdicken $\mathbf{S}_{\rm d}$ von \geq 30 m für die hier beschriebenen Anwendungen von einer ausreichenden diffusionshemmenden Schicht gesprochen werden. Zur Ermittlung der wasserdampfdiffusionsäquivalenten Luftschichtdicke $\mathbf{S}_{\rm d}$ sind die Wasserdampf-Diffusions-Widerstandszahl μ und die Bauteildicke erforderlich.

Stoßstellen von Dichtungen sind, wenn sie mit der von Stabalux empfohlenen "SG-Nahtpaste" verklebt werden, vergleichbar dicht wie der gesamte Dichtungsquerschnitt.

Dampfdichte Anschlüsse an den Baukörper sind zur Vermeidung einer Baukörperdurchfeuchtung möglichst weit zur Raumseite zu platzieren (siehe Abb. 1. auf Folgeseite). Zusätzliche Folien auf der Wetterseite (sprich, eine äußere 2. Folie) sind nur dann zu verwenden, wenn Schlagregen oder aufsteigendes Wasser nicht anderweitig abgehalten werden können. Hierfür sind dampfdurchlässige Folien zu verwenden. Als dampfdurchlässig im Sinne unserer Konstruktionen sind Schichtdicken S_d von max. 3 m anzusehen.

Nachfolgende Tabelle zeigt einige Werkstoffbeispiele.

Äußere Dichtungsebene

Die äußere Dichtung hat primär eine Dichtfunktion gegen Schlagregen. Es muss aber sichergestellt werden, dass durch Konvektionsöffnungen ein Diffusionsgefälle von innen nach außen vorhanden ist (siehe Abb. 2 und 3 auf Folgeseite).

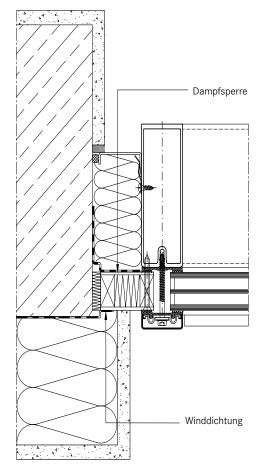
Konvektionsströme

Bei Stabalux Pfosten-Riegel-Konstruktionen sind die Falzräume grundsätzlich belüftet. Die Belüftung erfolgt durch Öffnungen, jeweils am unteren und oberen Ende im Bereich der Pfosten. Diese bereits durch die Konstruktion vorgegebenen Öffnungen sind schlagregendicht zu gestalten.

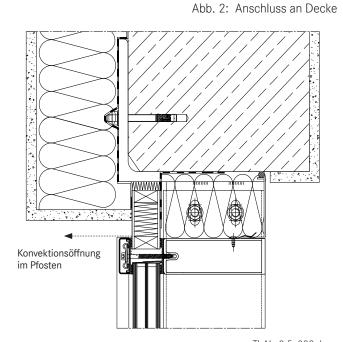
Die horizontalen Falzräume werden über die Verbindungen an den Kreuzstößen bzw. durch Öffnungen in den Deckleisten belüftet. Sollte eine zusätzliche Belüftung im Riegelbereich erforderlich sein (z.B. bei nur 2-seitig gelagerten Scheiben oder bei Riegellängen über $\ell \geq 2,00$ m) ist diese Belüftung durch Anbringung von Lochungen in den Deckleisten und/oder durch Ausklinkungen der unteren Dichtlippen in den aüßeren Dichtungen zu schaffen.

Material	Rohdichte	μ - Wa	sserdampfdiffusinszahl
	kg/m³	trocken	feucht
Luft	1,23	1	1
Gips	600-1500	10	4
Beton	1800	100	60
Metalle/Glas	-	∞	∞
Mineralwolle	10-200	1	1
Bauholz	500	50	20
Polystyrol	1050	100000	100000
Butylkauschuk	1200	200000	200000
EPDM	1400	11000	11000

 μ - ist ein dimensionsloser Wert. Je größer die μ - Zahl, desto dampfdichter ist der Stoff. Multipliziert mit der Dicke das Baustoffes ergibt er den Bauteil bezogenen Wert $S_d = \mu \cdot d$.

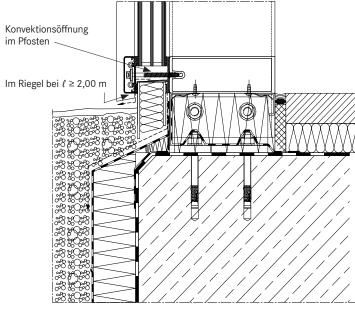

Der $\rm S_d$ -Wert eines Bauteils beschreibt, wie dick eine ruhende Luftschicht sein müsste (in Metern), damit sie den gleichen Diffusionswiderstand wie das Bauteil hat.

Feuchteschutz in der Glasfassade


9.5 1

Konstruktionsdetails

Abb. 1: Horizontaler Wandanschluss



TI-AL_9.5_001.dwg

TI-AL_9.5_002.dwg

Abb. 3: Fußpunkt

TI-AL_9.5_002.dwg

Wissenswertes Potentialausgleich/Blitzschutz

Potentialausgleich und Blitzschutz von Vorhangfassaden

9.6 1

Einführung

Grundsätzlich ist zu unterscheiden zwischen Potentialausgleich für den Personenschutz (Schutzpotentialausgleich) und einem erweiterten Potentialausgleich (Blitzschutz-Potentialausgleich).

In Pfosten-Riegel-Konstruktionen müssen, sofern nach EN 13830 gefordert, zur Erfüllung eines Potential ausgleichs für den Personenschutz die Metallrahmenteile elektrisch miteinander verbunden und an den Schutzpotentialausgleich angeschlossen werden.

Gegen Bedrohungen durch extreme Wetterbedingungen schützen Blitzschutzsysteme nach EN 62305. Hierfür ist eine umfangreiche Fachplanung erforderlich.

Die Projektierung und Planung des Potentialausgleichsowie Blitzschutzsystems ist nicht im Leistungsumfang des Fassadenherstellers enthalten. Der Architekt/Planer muss sich über die normativen Anforderungen an das Bauwerk informieren. Die Planung ist vom Elektroplaner rechtzeitig beizustellen. Alle Normen und Vorschriften sind zu beachten.

Vor der Erstbetriebsnahme der elektrischen Anlage ist eine Abnahmeprüfung erforderlich.

Begriffe

Potentialausgleich

Als Potentialausgleich wird eine elektrisch gut leitfähige Verbindung bezeichnet, die unterschiedliche elektrische Potentiale und somit eine elektrische Spannung zwischen leitfähigen Körpern (z.B. Wasser- und Heizungsrohren, Antennenanlagen, elektrischen Einrichtungen) verhindern oder reduzieren soll. Der Potentialausgleich soll alle auftretenden Potentialdifferenzen auf einen zulässigen Wert begrenzen.

Potentialdifferenzen

Potentialdifferenzen sind Spannungen, die bei Fehlern im Energiesystem und bei Blitzentladungen auftreten können.

Blitzschutz

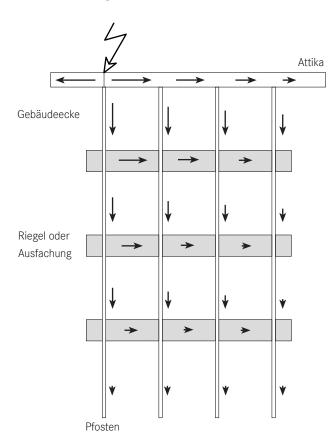
Unter Blitzschutz versteht man Schutzmaßnahmen gegen Auswirkungen von Blitzentladungen auf bauliche Anlagen und Personen.

Äußeres Blitzschutzsystem

Das äußere Blitzschutzsystem bietet Schutz bei Blitzentladungen, die direkt in die schützende Anlage erfolgen. Es besteht aus Fangeinrichtung, Ableitungseinrichtung und Erdungsanlage.

Ableitungseinrichtung

Die Ableitungseinrichtung leitet den Blitzstrom von der Fangeinrichtung zur Erdungsanlage. Sie besteht aus senkrecht geführten Ableitungen, die gleichmäßig über den Umfang der baulichen Anlage verteilt sind. Als Ableitungen können sowohl separate Leitungen als auch ausreichend dimensionierte Metallteile der zu schützenden Anlage verwendet werden.


Regelwerke

- VFF Merkblatt 09.2009 "Potentialausgleich und Blitzschutz von Vorhangfassaden".
- Landesbauordnungen LBO.
- Musterhochhausrichtlinie MHHR.
- EN 13830 Produktnorm für Vorhangfassaden.
- VDE 0100-410: 2007 (IEC 60364-4-41: 2005, modifiziert) - regelt Schutzmaßnahmen gegen elektrischen Schlag.
- VDE 0100-540: 2012-06 (IEC 60364-5-54: 2011, modifiziert) - regelt Erdungsanlagen, Schutzleiter, und Schutzpotentialausgleichsleiter.
- EN 62305-3 / VDE 0185-305-3: 2011-10 regelt Blitzschutz von baulichen Anlagen und Personen.
- EN 62305-4 / VDE 0185-305-4: 2011-10 regelt erweiterte Maßnahmen für bauliche Anlagen mit Anforderungen gegen elektromagnetische Blitzimpulse.
- VdS 2010: 2015-04 Risikoorientierter Blitz- und Überspannungsschutz .

Potentialausgleich und Blitzschutz von Vorhangfassaden

9.6 1

Verteilung des Blitzstroms in der Fassade

Der Blitz schlägt bevorzugt am höchsten Punkt der Gebäudeecke ein. Um Schäden zu vermeiden, ist der Blitzstrom über definierte Ableitungseinrichtungen zur Erdungsanlage zu führen. Hierfür können auch elektrisch leitende Bestandteile des Gebäudes herangezogen werden.

Konstruktive Lösungen

Potentialausgleich für den Personenschutz

Der Potentialausgleich muss eine gefährliche Funkenbildung innerhalb der baulichen Anlage verhindern, die durch Fehlströme an leitenden Teilen der Anlage entstehen können (z.B. durch eine defekte Stromleitung).

Ein ausreichender Potentialausgleich wird erreicht, indem die Metallrahmenteile der Fassade elektrisch leitend miteinander verbunden werden. Oft reichen hierfür die T-Verbindungen der Pfosten-Riegel-Konstruktion.

Bei Holz/Alu Konstruktionen genügt oft die elektrisch leitende Verbindung, z.B. über die vertikalen Pressleisten, da die horizontalen Pressleisten durch die Dehnfugen isoliert angeordnet sind.

Für Fassadenstöße, die nicht elektrisch ausgebildet werden können, müssen entsprechende Übergangsbrücken verwendet werden.

Alternativ kann eine separate Ableitungseinrichtung (Kabeln) in den Hohlräumen der Oberleisten platziert werden. Die Mindestquerschnitte der Leitungen sind bei der Auswahl der Oberleisten zu beachten.

Für Bauteilverbindung der Fassade müssen metallische Verbindungselemente folgender Mindestquerschnitte gemäß VDE 0100-540 angewendet werden:

Kupfer 5 mm²
Aluminium 8 mm²
Stahl 16 mm²

Die erforderlichen Querschnitte können auch über Mehrfachverbinder, z.B. Schrauben, erreicht werden. Für die Edelstahlschrauben gilt der Querschnitt 16 mm². Dies entspricht einer Stabalux Systemschraube mit dem Außendurchmesser von 6,3 mm und dem Kerndurchmesser von 4,8 mm.

Wissenswertes Potentialausgleich/Blitzschutz

Potentialausgleich und Blitzschutz von Vorhangfassaden

9.6 1

Zum Anschluss an das Potentialausgleichsystem sind entsprechende Übergabepunkte im Rahmen der Planung abzustimmen und eindeutig zu definieren. Die notwendigen Übergabepunkte können entweder an der Fassadenaußenseite oder an der Fassadeninnenseite ausgeführt werden. Es wird empfohlen, die Anschlüsse geschossweise anzuordnen.

Blitzschutz mit erweitertem Potentialausgleich

Der Blitzschutz-Potentialausgleich stellt eine Erweiterung des Potentialausgleiches dar. Unter Blitzschutz-Potentialausgleich versteht man den Teil des inneren Blitzschutzes, der im Falle einer Blitzentladung in das Blitzschutzsystem oder in die eingeführten Leitungen für eine sichere Einbindung aller von Außen eingeführten Leitungen mit dem Potentialausgleichssystem sorgt.

Soll eine Pfosten-Riegel-Konstruktion als natürlicher Bestandteil der Ableitungseinrichtung verwendet werden, ist dies gesondert zu vereinbaren und entsprechend der Leistungsbeschreibung als eigene Position auszuschreiben, da i.d.R. andere Verbindungen als sonst benötigt werden.

Die Potentialausgleichsleiter für diese Anbindung müssen folgende min. Querschnitte gem. EN 62305 aufweisen:

Kupfer 16 mm²
Aluminium 25 mm²
Stahl 50 mm²

Wissenswertes **Einbruchhemmende Fassaden**

Einbruchhemmende Fassaden

9.7 1

Einsatzempfehlungen

Die Auswahl der einzusetzenden Widerstandsklasse ist abhängig von der individuellen Gefährdungssituation zu treffen, zum Beispiel von der Lage im Objekt und der Einsehbarkeit des Elementes. Hilfestellungen bieten die kriminalpolizeilichen Beratungsstellen und Versicherer. Nach DIN EN 1627 erfolgt eine Einstufung in die Bauteilwiderstandsklassen RC1 bis RC6. Damit gekoppelt sind Mindestanforderungen an das System und die eingesetzten Gläser und Paneele.

Regelwerke und Prüfungen

Die Norm DIN EN1627 regelt die Anforderungen und Klassifizierung einer einbruchhemmenden Fassade. Die Prüfverfahren für die Widerstandsfähigkeit unter statischer und dynamischer Belastung sind in den Normen DIN EN 1628 und DIN EN 1629 erfasst. Das Prüfverfahren für die Widerstandsfähigkeit gegen manuelle Einbruchsversuche basiert auf der DIN EN 1630. Der Nachweis der Einhaltung der Anforderungen gemäß den vorgenannten Normen ist von einer anerkannten Prüfinstitution zu führen. Eingesetzte Füllelemente unterliegen den Bedingungen der Norm DIN EN 356.

Kennzeichnung und Nachweispflicht

Als Mindestanforderung sind Montageanleitung und Prüfbericht durch den Systemgeber bereitzustellen. Der Einfluss von Abweichungen bzw. Änderungen zu den geprüften Probekörpern auf deren einbruchhemmende Eigenschaft ist durch Gutachtliche Stellungnahme geklärt.

Die fachgerechte Montage nach der Montageanleitung des Systemgerbers sollte durch eine Montagebescheinigung des Herstellers der Fassade bescheinigt werden. DIN EN 1627 liefert hierzu eine Vorlage. Ein entsprechender Vordruck ist auch bei Stabalux erhältlich. Die Montagebescheinigung ist dem Bauherrn auszuhändigen.

Zur Sicherung der Qualität kann für den verarbeitenden Betrieb auf freiwilliger Basis eine Zertifizierung nach DIN CERTCO und anderen nach DIN EN 45011 akkreditierten Zertifizierungsstellen erfolgen.

Einbruchhemmmende Bauteile sind in diesem Fall dauerhaft zu kennzeichnen, zum Beispiel durch ein Typenschild, welches an einer unauffälligen Stelle an der Fassade befestigt werden sollte. Das Kennzeichnungsschild muss leicht lesbar in einer Mindestgröße von 105 mm x 18 mm sein und mindestens folgende Angaben enthalten:

- Einbruchhemmendes Bauteil DIN EN 1627
- Erreichte Widerstandsklasse
- Produktbezeichnung des Systemgebers
- Gegebenenfalls Zertifizierungszeichen
- Hersteller
- Prüfbericht Nummer ..., Datum ...
- Prüfstelle, gegebenenfalls verschlüsselt
- Herstellungsjahr

Im Rahmen der kriminalpolizeilichen Empfehlung werden nur von einer akkreditierten Zertifizierungsstelle zertifizierte Betriebe empfohlen. Weitere Informationen für die Erteilung des "DIN geprüft" Zeichens sind in dem Zertifizierungsprogramm "Einbruchschutz" festgelegt und bei DIN CERTCO erhältlich.

Geprüfte Systeme

• Stabalux AL RC2

Einbruchhemmende Fassaden

9.7 1

Konstruktion

Wichtigste Merkmale für die Fertigung der einbruchhemmenden Fassade sind:

- Einsatz von geprüften Gläsern und Paneelen als Füllelemente.
- Festlegung der Einstandstiefen der Füllelemente.
- Einbau einer seitlichen Klotzung zur Verhinderung der Verschiebbarkeit der Füllelemente.
- Festlegung der Schraubenabstände und der Einschraubtiefen.

Einbruchhemmende Fassaden mit dem System Stabalux AL unterscheiden sich äußerlich nicht von der Normalkonstruktion.

- Gleiche Gestaltungsmöglichkeiten und Optik wie in der Normalfassade.
- Verwendung fast aller Oberleisten möglich.
- Alle inneren Dichtungssysteme (1-, 2- und 3-Ebenen) sind einsetzbar.
- Nutzung aller Vorteile im System Stabalux AL.

Wissenswertes **Einbruchhemmende Fassaden**

Einbruchhemmende Fassaden

Montagebescheinigung nach DIN EN 1627						
Firma:						
Anschrift:	Anschrift:					
		end aufgeführte einbruchhem anleitung (Anlage zum Prüfbe	nmende Bauteile entsprechen ericht)	d		
im Objekt:						
Anschrift:						
eingebaut w	eingebaut wurden.					
Stück		Lage im Objekt	Widerstandsklasse	besondere Angaben		
•••••	Datum Stempel Unterschrift					

Einbruchhemmende Fassaden - RC2

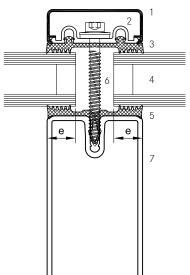
9.7 2

Widerstandsklasse RC2

Im System Stabalux AL können Fassaden der Widerstandsklasse RC2 in der Systembreite 50 mm gebaut werden.

Im Vergleich zur Normalfassade ist nur ein minimaler zu sätzlicher Fertigungsaufwand zur Erzielung der Widerstandsklasse RC2 erforderlich.

- Sicherung der Füllelemente gegen seitliches Verschieben.
- Anordnung und Wahl der Klemmleistenverschraubung in Abhängigkeit der zulässigen Achsmaße der Felder.
- Verschraubung alle 125 mm.
- Durchdringung des Schraubkanals jeder zweiten Schraube.


Es sind nur geprüfte oder gutachtlich positiv bewertete Systemartikel und Füllelemente zugelassen.

Es ist stets nachzuweisen, dass bei gewählten Abmessungen die eingesetzten Komponenten den projektbezogenen statischen Anforderungen an das System genügen.

Die gestalterischen Möglichkeiten der Fassade bleiben erhalten, da die Verwendung aller passenden geklipsten Oberleisten aus Aluminium zulässig ist.

Dichtungssysteme

Bei einbruchhemmenden Fassaden sind für die innere Dichtungsebene Systeme mit einer Ebene ebenso möglich wie die überlappenden Dichtungssysteme mit 2 und 3 Ebenen.

Einstand "e" der Füllelemente Systembreite 50 mm: e = 15 mm

- 1 Oberleiste
- 2 Unterleiste
- 3 Außendichtung
- 4 Füllelement
- Innendichtung(z.B. mit 1 Entwässerungsebene)
- 6 Systemverschraubung
- 7 Schraubrohr

Wissenswertes **Einbruchhemmende Fassaden**

Einbruchhemmende Fassaden - RC2

Zugelassene Systemartikel im System Stabalux AL

Systemkomponente Stabalux AL	Systembreite 50 mm			
Pfostenquerschnitt Mindestabmessung	Schraubrohr AL 5090			
Riegelquerschnitt Mindestabmessung	Schraubrohr AL 5040			
Pfosten-Riegel-Verbindung	Geschraubte Riegelhalter nach allgemeiner bauaufsichtlicher Zulassung			
Innendichtung Pfosten	z.B. GD 5201, GD 5314			
Innendichtung Riegel (mit angearbeiteter Riegelfahne)	z.B. GD 5203, GD 5317			
Außendichtung Pfosten	z.B. GD 5024, GD 1932			
Außendichtung Riegel	z.B. GD 5054, GD 1932			
Klemmleisten	UL 5009			
Klemmleistenverschraubung	Systemschrauben (Zylinderkopfschraube mit Dichtscheibe Innensechskant, Edelstahl, z.B. Z 0156)			
Glasauflager	z.B. GH 5101, GH 5201			
Seitliche Klotzung	z.B. Z 1061			
Schraubensicherungen	nicht nötig			
				

Einbruchhemmende Fassaden - RC2

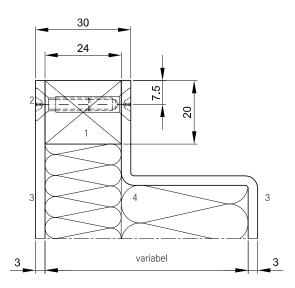
9.7 2

Füllelemente

Es ist bauseitig zu prüfen, ob die Füllelemente den projektbezogenen statischen Anforderungen genügen.

Verglasungen und Paneele müssen mindestens die Anforderungen gemäß DIN EN 356 erfüllen.

Glas


Für die Widerstandsklasse RC2 ist eine durchwurfhemmende Verglasung P4A, wie zum Beispiel die Firma SAINT GOBAIN liefert, einzubauen. Der Gesamtaufbau des Glases beträgt ca. 30 mm.

- Produkt SGG STADIP PROTECT CP 410
- Widerstandsklasse P4A
- Mehrscheibenisolierglas, Glasaufbau von außen nach innen:
 - 4 mm Float /16 mm SZR / 9,52 mm VSG
- Glasdicke d = 29,52 mm ≈ 30 mm
- Glasgewicht ca. 32 kg/m²

Paneel

Paneelaufbau:

3 mm Alublech / 24 mm PUR (oder vergleichbares Material) mit verstärktem Randverbund / 3 mm Alublech. Die Gesamtdicke beträgt 30 mm.

Randverbund:

Zur Verstärkung der Paneele wird ein umlaufender Rand 24 mm x 20 mm aus PUR-Recyclingmaterial (z.B. Purenit, Phonotherm) eingelegt. Im Bereich des Randverbundes werden beide Bleche je Seite mit Schrauben im Abstand a \leq 116 mm durchgehend miteinander verschraubt. Es können Edelstahlschrauben Ø 3,9 mm x 38 mm verwendet werden, die an der Nicht-Angriffsseite abgeflext und geschliffen werden. Alternativ können Hülsenschrauben / Muttern M4 verwendet werden.

Um weiteren Anforderungen an das Paneel gerecht zu werden (z.B. Anforderungen an die Wärmedämmung), ist unten zeichnerisch dargestellte Abänderung der Geometrie im Querschnitt zulässig, wenn die Materialstärke der Alubleche t = 3 mm beibehalten und die Ausbildung des Randverbundes entsprechend vorhergehender Beschreibung ausgebildet wird.

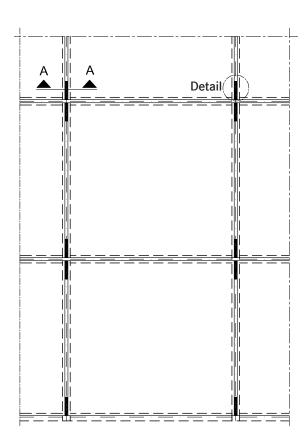
Einstand der Füllelemente

Für Schraubrohre mit der Systembreite 50 mm muss der Einstand der Füllelemente e = 15 mm betragen.

- 1 Randverbund
- 2 Verschraubung z.B. Hülsenschraube / Mutter M4
- 3 Aluminiumblech t = 3 mm
- 4 Dämmung

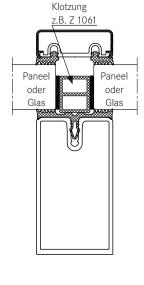
Einbruchhemmende Fassaden - RC2

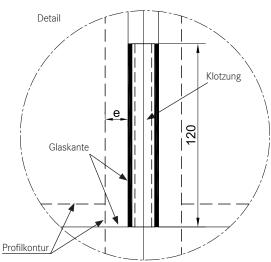
9.7 2


Seitliches Klotzen der Füllelemente

Die Füllelemente müssen gegen seitliches Verschieben gesichert werden. Der Einbau einer seitlichen druckfesten Klotzung verhindert ein mögliches Verschieben der Füllelemente bei manuellem Angriff.

Im Falzraum der Pfosten ist je Füllungsecke eine Klotzung vorzusehen. Die Klotzungen (z. B. Z 1061, Kunststoffrohr mit den Maßen H x B x T = 20 mm x 24 mm x 1,0 mm, Länge ℓ = 120 mm) sind im System zu verkleben.


Der verwendete Kleber muss mit dem Randverbund der Füllelemente verträglich sein. Alternativ kann die Klotzung durch Verschraubung mit dem Schraubrohr fixiert werden.


Die Klotzung kann auch aus anderen druckfesten, nicht saugenden Materialien zugeschnitten werden wie z.B. PUR-Recyclingmaterial (z.B. Purenit, Phonotherm).

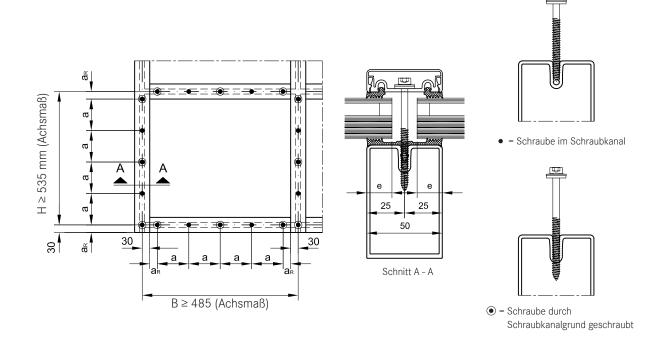
*) Klotzung verkleben (der Kleber muss mit dem Randverbund der Füllelemente verträglich sein) oder Lagesicherung mittels Fixierschraube im Schraubkanal

Schnitt A - A

Einbruchhemmende Fassaden - RC2

9.7 2

Klemmleistenverschraubung Stabalux AL


Die Verschraubung erfolgt im Schraubkanal (•) bzw. im Schraubkanal mit Durchdringung des Schraubkanalgrundes (◉).

- Die Schraubenlänge ist für jeden Anwendungsfall zu berechnen.
- Der Randabstand der Klemmleistenverschraubung ist mit a_R = 30 mm festgelegt.
- Die Achsmaße B und H können unbegrenzt gewählt werden, die minimale Feldgröße liegt bei 485 x 535 mm. Es sind je Seite min. 5 Schrauben einzusetzen.
- Die erste und letzte Schraube an jeder Klemmleiste ist im Schraubkanal und durch den Schraubkanalgrund zu verschrauben. Zusätzlich muss jede zweite Schraube den Schraubkanal durchdringen.

• Die Wahl und Anordnung der Verschraubung ist abhängig von den Achsmaßen der Felder. Der maximale Schraubenabstand von a = 125 mm darf in keinem Fall überschritten werden.

Sicherung der Klemmleistenverschraubung gegen Losdrehen

Eine Sicherung der Klemmleistenverschraubung ist bei dem System Stabalux AL nicht nötig.

9.7 2

Montageanleitung System AL

Grundsätzlich gelten die Verarbeitungshinweise für das System Stabalux AL gemäß Katalog Abschnitt 1.2. Zur Erfüllung der Kriterien der Widerstandsklasse RC2 sind zusätzlich folgende Punkte zu beachten und die erforderlichen Verarbeitungsschritte zu berücksichtige:

- 1 Errichtung der Fassade unter Einbezug der geprüften Systemartikel und nach statischen Erfordernissen
- 2 Die Füllelemente (Glas und Paneel) müssen durchwurfhemmend gemäß DIN EN 356 sein. Für die Widerstandsklasse RC2 ist eine geprüfte Verglasung P4A zu wählen, wie z.B. SGG STADIP PROTECT CP 410 mit ca. 30 mm Glasaufbau.
- 3 Für Aluprofile mit der Systembreite 50 mm muss der Einstand der Füllelemente e = 15 mm betragen.
- 4 Die Füllelemente sind gegen seitliches Verschieben durch Klotzungen zu sichern. Dazu ist der Einbau von Klotzungen im Falzraum der Pfosten an jeder Füllungsecke erforderlich.
- 5 Es sind ausschließlich Stabalux Systemschrauben mit Dichtscheiben und Innensechskant zu verwenden (z.B. Artikel-Nr. Z 0156). Der Randabstand der Klemmleistenverschraubung ist mit $a_R = 30$ mm einzuhalten. Der maximale Schraubenabstand darf den Wert a = 125 mm nicht überschreiten.

- 6 Die Glasauflager sind so zu positionieren, dass sie zwischen das Schraubenraster von 125 mm montiert werden können.
- Die Lagerung der Pfosten (Fuß-, Kopfpunkt und Zwischenlager) muss statisch ausreichend bemessen sein und die beim Einbruchsversuch auftretenden Kräfte sicher aufnehmen. Zugängliche Befestigungsschrauben sind gegen unbefugtes Losdrehen zu sichern.
- 8 Einbruchhemmende Bauteile sind für den Einbau in Massivwände vorgesehen. Für Wandanschlüsse gelten die in DIN EN 1627 angegebenen Mindestanforderungen.

Zuordnung der Widerstandsklasse RC2 der einbruchhemmenden Bauteile zu den Wänden

Widerstandsklasse	Mauerwerk nach DIN 1053 – 1			Umgebende Wände Stahlbeton nach DIN 1045		Wand aus Porenbeton		
menden Bauteils nach DIN EN 1627	Nenndicke	Druckfestig- keitsklasse der Steine	Mörtel- gruppe	Nenndicke	Festigkeits-		Druckfestig- keitsklasse der Steine	Ausführung
RC2	≥ 115 mm	≥ 12	II	≥ 100 mm	≥ B 15	≥ 170 mm	≥ 4	verklebt